
CS70: Lecture 9. Outline.

1. Public Key Cryptography

2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat’s Theorem.
2.3 Construction.

3. Warnings.

Isomorphisms.
Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
If gcd(b,m) = 1, there is unique x (mod mn) where

x = a (mod m) and x = b (mod n).

Bijection between (a (mod n),b (mod m)) and x (mod mn).

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Poll

x = 5 mod 7 and x = 5 mod 6
y = 4 mod 7 and y = 3 mod 6

What’s true?

(A) x +y = 2 mod 7
(B) x +y = 2 mod 6
(C) xy = 3 mod 6
(D) xy = 6 mod 7
(E) x = 5 mod 42
(F) y = 39 mod 42

All true.

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1⊕1 = 0
1⊕0 = 1
0⊕1 = 1
0⊕0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Cryptography ...

BobAlice
Eve

Secret s

Message m
E(m,s)E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s = ..................................

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m
E(m,K )E(m,K )

m = D(E(m,K ),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?



Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(C) ed = 1 (mod N−1)
(D) Bob forgot p and q but can still decode?
(E) Bob knows d
(F) ed = 1 (mod ()p−1)(q−1) if N = pq.

(A), (B), (D), (E), (F)

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.
Message: 2!

E(2) = 2e = 27 ≡ 128 = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Repeated squaring.

Notice: 43 = 32+8+2+1 or 101011 in binary.
5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
4 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Recursive version.

(define (power x y m)
(if (= y 1)
(mod x m)
(let ((x-to-evened-y (power (square x) (/ y 2) m)))
(if (evenp y)

x-to-evened-y
(mod (* x x-to-evened-y) m )))))

Claim: Program correctly computes xy .

Base: x1 = x (mod m).

Note: y = 2by/2c+ mod (y ,2).

xy = x2(by/2c)+ mod (y ,2) = (x2)by/2cxy mod 2 (mod m).

Induction:
Recursive call on x2 and by/2c, returns (x2)by/2c.

≤ 2 multiplications per recursive call.

Note: by/2c is integer division.



Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2blogyc
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Poll
Mark what is true.

(A) 27 = 1 mod 7
(B) 26 = 1 mod 7
(C) 21,22,23,24,25,26,27 are distinct mod 7.
(D) 21,22,23,24,25,26 are distinct mod 7
(E) 215 = 2 mod 7
(F) 215 = 1 mod 7

(B), (F)



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p) x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

From CRT: y = x (mod p) and y = x (mod q) =⇒ y = x .

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed ≡ x (mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1≡ x (mod pq).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...



Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV )?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV )= Cd mod N.
Browser receives: [C,y ]
Checks E(y ,KV ) = C?

E(Sv (C),KV ) = (Sv (C))e = (Cd )e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

Public Key Cryptography:

D(E(m,K ),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K ) = (Cd )e mod N = C

Poll

Signature authority has public key (N,e).

(A) Given message/signature (x,y) : check yd = x (mod N)
(B) Given message/signature (x ,y): check ye = x (mod N)
(C) Signature of message x is xe (mod N)
(D) Signature of message x is xd (mod N)

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.


