Today.

Quick review.
Finish Graphs (maybe.)
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Proof of “handshake” lemma.

Lemma: The sum of degrees is 2| E|, for a graph G = (V,E).
What'’s true?

A) The number of edge-vertex incidences for an edge e is 2.

B) The total number of edge-vertex incidences is | V/|.

C) The total number of edge-vertex incidences is 2| E|.

D) The number of edge-vertex incidences for a vertex v is its degree.
) The sum of degrees is 2| E]|.

(
(
(
(
(E
(F) Total number of edge-vertex incidences is sum of vertex degrees.
(

B) is false. The others are statements in the proof.
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Poll: Euler concepits.

A graph is Euleurian if it is connected and has even degree.

A graph is Eulerian if it is conncected and has a tour that uses every
edge once.

Mark correct statements for a connected graph where all
vertices have even degree. (Here a tour means uses an edge
exactly once, but may involve a vertex several times.

(A) There is no Hotel California in this graph.

(B) Walking on unused edges, starting at v, eventually return to v.
(C) Removing a tour leaves a graph of even degree.

(D) Removing a tour leaves a connected graph.

(E) Remove set of edges E’ in connected graph, connected
component is incident to edge in E’

(F) A tour connecting a set of connected components, each with a
Eulerian tour is really cool! This implies the graph is Eulerian.

Only (C) is false. The rest are steps in the proof.
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Lecture 6.

Euler’s Formula.

Planar Six and then Five Color theorem.

Types of graphs.

Complete Graphs.
Trees (a little more.)
Hypercubes.
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Planar graphs.

A graph that can be drawn in the plane without edge crossings.

AR &

Planar? Yes for Triangle.
Four node complete? Yes.

(complete = every edge present. K, is n-vertex complete graph. )
Five node complete or K5 ? No! Why? Later.

B, <o 15

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or K3 3. No. Why? Later.
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Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K4? 4
bipartite, complete two/three or K> 37 3

v is number of vertices, e is number of edges, f is number of faces.
Euler’s Formula: Connected planar graph has v+f=e+2.

Triangle: 3+2 =3+2!
Ky:4+4=6+2!
Ko3:5+3=6+2!

Examples = 3! Proven! Not!!!!
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Euler and Polyhedron.
Greeks knew formula for polyhedron.

Faces? 6. Edges? 12.  Vertices? 8.
Euler: Connected planar graph: v+f=e-+2.
8+6=12+2.

Greeks couldn’t prove it. Induction? Remove vertice for polyhedron?
Polyhedron without holes = Planar graphs.

For Convex Polyhedron:
Surround by sphere.
Project from internal point polytope to sphere: drawing on sphere.
Project Sphere-N onto Plane: drawing on plane.

Euler proved formula thousands of years later!

7/33



Euler and non-planarity of Ks and K3 3

Euler: v+ f = e+ 2 for connected planar graph.
We consider simple graphs where v > 3.
Consider Face edge Adjacencies with multiplicities

NN

Each face is adjacent to at least three edges(v > 2).
> 3f face-edge adjacencies.
Each edge is adjacent to two faces.
= 2e face-edge adjacencies.
= 3f < 2efor any planar graph with v >2. Or f < %e.

Plug into Euler: v+ 5e>e+2 = e<3v-6

Ks Edges? e=4+3+2+1 =10. Vertices? v =5.
10 £3(5)—6=9. = Ks is not planar.
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Planar — e < 3v —-6. Flow Poll.

Euler's formula: v+f=e+2

Consider graph with > 2 vertices. Understand the following.
(A) Every face is incident to > 3 edges.

(B) Face-edge incidences > 3f

(C) Every edge is incident (with multiplicity) to 2 faces.

(D) Face edge incidences = 2e

(E) 3f < Face-ege-incidence = 2e

(F)3(e+2—-v)<=2e

Conclusion: e <=3v -6
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Proving non-planarity for K3 3

K337 Edges? 9. Vertices. 6.
e < 3(v) — 6 for planar graphs.
9 < 3(6)—6? Sure!
Step in proof of Ks5: faces are adjacent to > 3 edges.
For K3 3 every cycle is of even length or incident > 4 faces.
Finish in homework!
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Planarity and Euler

These graphs cannot be drawn in the plane without edge crossings.

Euler's Formula: v+ f = e+ 2 for any planar drawing.

= for simple planar graphs: e <3v —6.
Idea: Face is a cycle in graph of length 3.
Count face-edge incidences.

= for bipartite simple planar graphs: e <2v —4.
Idea: face is a cycle in graph of length 4.
Count face-edge incidences.

Proved absolutely no drawing can work for these graphs.
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Euler’s formula.

Euler: Connected planar graph has v+ f =e+2.

Proof: Induction on e.

Base: e=0,v=Ff=1.

Induction Step:
Ifitisatree.e=v—1,f=1,v4+1=(v—-1)+2. Yes.
If not a tree.

Find a cycle. Remove edge.

Outer face.

Joins two faces.

New graph: v-vertices. e — 1 edges. f — 1 faces. Planar.

v+ (f—1)=(e—1)+2 by induction hypothesis.
Therefore v+f=e+2.
Quick:
v+1=(v—1)+2,addedge: f > f+1,e—e+1.
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Euler’s Proof.Poll.

Euler: Connected planar graph has v+ f =e+2.
Steps/concepts in proof of euler’s formula.

(A) Planar drawing of tree has 1 face.

(B) Tree has | V| — 1 edges.

(C) Induction.

(D) face is adjacent to at least 3 edges.

(E) edge has two edge adjacencies.

(F) Add edge to planar drawing splits a face.

All are true and relevant to proof.
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Graph Coloring.

Given G= (V,E), a coloring of G assigns colors to vertices V where
for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!
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Planar graphs and maps.

Planar graph coloring = map coloring.

.

—?\
pe

.

Four color theorem is about planar graphs!
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Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e < 3v —6 for any planar graph where v > 2.
From Euler’s Formula.

Total degree: 2e
._ 2e . 2(3v-6 12
Average degree: = 2¢ < 280 < g_ 12,
There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...
and only five colors are used. O
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Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.

Can switch in one component.
Or the other.
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Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise one of 5 colors is available. = Done!
Switch green and blue in green’s component.

Done. Unless blue- path to blue.
Switch orange and red in oranges component.
Done. Unless red- path to red.

Planar. = paths intersect at a vertex!

What color is it?
Must be blue or to be on that path.
Must be red or to be on that path.

Contradiction. Can recolor one of the neighbors.
Gives an available color for center vertex! O
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5 color theorem. Flow poll.

Steps/ideas in 5-color theorem.

(A) There is a degree 5 vertex cuz Euler.

(B) Take subgraph of first and third colors, recolor first components.
(C) If a third’s component is different, switched coloring is good.

(D) Subgraph of second and fourth colors, can recolor, recolor
second component.

(G) At least one separate component cuz planarity.

(F) Shared color of five neighbors, done.

All steps in proof!
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Four Color Theorem

Theorem: Any planar graph can be colored with four colors.
Proof: Not Today!
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Complete Graph.

A

K, complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to n— 1 edges.
Sum of degrees is n(n—1) = 2|E|
= Number of edges is n(n—1)/2.
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K4 and Ksg

Ks is not planar.
Cannot be drawn in the plane without an edge crossing!
Prove it! We did!
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Tree’s fall apart.

Thm: There is one vertex whose removal disconnects |V|/2 nodes
from each other.

Idea of proof.
Point edge toward bigger side.

Remove center node: node with no outgoing arc. (Hotel
California.)

All the neighbors in components that are smaller than |V/|/2.
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Hypercubes.

Complete graphs, really connected! But lots of edges.
VIV -1)/2

Trees, few edges. (|V|—1)
but just falls apart!

Hypercubes. Really connected. |V|log|V| edges!
Also represents bit-strings nicely.

G=(V,E)
|V|=1{0,1}",
|E| = {(x,y)|x and y differ in one bit position.}
01 11 101 11
001 o
0 1
o 110
00 10 000 6100

2" vertices. number of n-bit strings!
n2"-" edges.
2" vertices each of degree n
total degree is n2" and half as many edges!
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Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n— 1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x, 1x).
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Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| <|V|/2 has > |S]
edges connectingitto V- S; |[ENSx (V—-S)| > |S|

Terminology:
(S,V—-_S)iscut.
(ENSx(V—-29)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.
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Cuts in graphs.

Sisred, V—Sis blue.

What is size of cut?

Number of edges between red and blue. 4.

Hypercube: any cut that cuts off x nodes has > x edges.
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Proof of Large Cuts.

Thm: For any cut (S, V — S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:

Base Case: n=1V={0,1}.
S = {0} has one edge leaving. |S| = ¢ has 0.
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Induction Step Idea

Thm: For any cut (S, V — S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside

subcube inductively. Case 2: Count inside and across.
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Induction Step

Thm: For any cut (S, V — S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.

Proof: Induction Step.
Recursive definition:
Ho = (W, Ep),Hi = (V4, Eq), edges Ex that connect them.
H:(VoU Vi, EqU E4 UEX)
S = SpUS; where Sy in first, and Sy in other.
Case 1: |Sp| < |Wl/2,151| < |V4]/2
Both Sy and Sy are small sides. So by induction.
Edges cutin Hy > |Sp|.
Edges cutin Hy > |Sy].

Total cut edges > |Sp|+|S1| =S|

O
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Induction Step. Case 2.

Thm: For any cut (S, V — S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.
|So| = [Vol/2.
Recall Case 1: |Spl,|Si| < |V|/2
|S1] < | Vi]/2 since | S| < |V]/2.
= >|S51| edges cutin Ej.
[Sol = [Vol/2 = [Vo— S| < |Vo|/2
= >|Vp| —|So| edges cut in Ep.
N Edges in Ex connect corresponding nodes.
= =1[Sp| —|Si| edges cut in Ey.

Total edges cut:
> S|+ Vol —[So| +[So| — [S1] = | Vol
Vol =VI/2>S]. O
Also, case 3 where |Sq| > | V|/2 is symmetric.
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Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1
set on boolean functions on {0,1}".

Central area of study in computer science!
Yes/No Computer Programs = Boolean function on {0,1}"
Central object of study.
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Summary.

Euler: v+f=e+2.
Tree. Plus adding edge adds face.
Planar graphs: e <3v =86.
Count face-edge incidences to get 2e < 3f.
Replace f in Euler.
Coloring:
degree d vertex can be colored if d + 1 colors.
Small degree vertex in planar graph: 6 color theorem.
Recolor separate and planarity: 5 color theorem.
Graphs:
Trees: sparsest connected.
Complete:densest
Hypercube: middle.

Have a nice weekend!
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