
CS70: Lecture 25.

Markov Chains: Distributions; Continuous Probability

1. Review
2. Distribution (Cont’d)
3. Irreducibility
4. Convergence
5. Continuous Probability: Introduction



Review

I Markov Chain:

I Finite set X ; π0; P = {P(i , j), i , j ∈X };
I Pr [X0 = i] = π0(i), i ∈X
I Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X ,n ≥ 0.
I Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

I First Passage Time:

I A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
I β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).



Balance Equations
Question: Is there some π0 such that πm = π0,∀m?

Definition A distribution π0 such that πm = π0,∀m is said to be an
invariant distribution.

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.

Proof: πn = π0Pn, so that πn = π0,∀n iff π0P = π0.

Thus, if π0 is invariant, the distribution of Xn is always the same as
that of X0.

Of course, this does not mean that Xn does not move. It means that
the probability that it leaves a state i is equal to the probability that it
enters state i .

The balance equations say that ∑j π(j)P(j , i) = π(i).
That is,

∑
j 6=i

π(j)P(j , i) = π(i)(1−P(i , i)) = π(i)∑
j 6=i

P(i , j).

Thus, Pr [enter i] = Pr [leave i].



Poll

Suppose π(j)P(j , i) = π(i)P(i , j),∀i , j . Select all true statements.
I π is certainly an invariant distribution.
I π might not be an invariant distribution.
I π can’t be an invariant distribution.



Balance Equations

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.
Example 1:

πP = π ⇔ [π(1),π(2)]
[

1−a a
b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a)+π(2)b = π(1) and π(1)a+π(2)(1−b) = π(2)
⇔ π(1)a = π(2)b.

These equations are redundant! We have to add an equation:
π(1)+π(2) = 1. Then we find

π = [
b

a+b
,

a
a+b

].



Balance Equations

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.
Example 2:

πP = π⇔ [π(1),π(2)]
[

1 0
0 1

]
= [π(1),π(2)]⇔ π(1)= π(1) and π(2)= π(2).

Every distribution is invariant for this Markov chain. This is obvious,
since Xn = X0 for all n. Hence, Pr [Xn = i] = Pr [X0 = i],∀(i ,n).



Irreducibility
Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).

Examples:
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[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j)> 0, irreducible
means that there is a single connected component.



Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only
one invariant distribution.

That is, there is a unique positive vector π = [π(1), . . . ,π(K )]
such that πP = π and ∑k π(k) = 1.

Proof: See EE126, or MC Note. (Proof is not in scope.)
Note: We know already that some reducible Markov chains
have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions
π and ν , then it has infinitely many invariant distributions.
Indeed, pπ +(1−p)ν is then invariant since

[pπ +(1−p)ν]P = pπP +(1−p)νP = pπ +(1−p)ν .



Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π.

Then, for all i ,

1
n

n−1

∑
m=0

1{Xm = i}→ π(i), as n→ ∞.

The left-hand side is the fraction of time that Xm = i during
steps 0,1, . . . ,n−1. Thus, this fraction of time approaches π(i).

Proof: See EE126. MC Note gives a plausibility argument.



Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π. Then, for all i , 1

n ∑
n−1
m=0 1{Xm = i}→ π(i), as n→ ∞.

Example 1:

The fraction of time in state 1 converges to 1/2, which is π(1).



Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π. Then, for all i , 1

n ∑
n−1
m=0 1{Xm = i}→ π(i), as n→ ∞.

Example 2:



Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does πn
approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

Assume X0 = 1. Then X1 = 2,X2 = 1,X3 = 2, . . ..

Thus, if π0 = [1,0], π1 = [0,1],π2 = [1,0],π3 = [0,1], etc.

Hence, πn does not converge to π = [1/2,1/2].



Periodicity
Theorem Assume that the MC is irreducible. Then

d(i) := g.c.d.{n > 0 | Pr [Xn = i | X0 = i]> 0}

has the same value for all states i .

Proof: See MC Note.
Definition If d(i) = 1, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period d(i).
Example

[A]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,7,9,10, . . .}⇒ d(1) = 1.

{n > 0 | Pr [Xn = 2|X0 = 2]> 0}= {3,4, . . .}⇒ d(2) = 1.

[B]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,9, . . .}⇒ d(i) = 3.

{n > 0 | Pr [Xn = 5|X0 = 5]> 0}= {6,9, . . .}⇒ d(5) = 3.



Poll

Xn is a MC with the transition diagram as shown. Select all true
statements.
I Xn is irreducible.
I Xn is reducible.
I Xn is periodic.
I Xn is aperiodic.



Convergence of πn
Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈X ,

πn(i)→ π(i), as n→ ∞.

Proof See EE126, or MC Note.

Example



Convergence of πn
Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈X ,

πn(i)→ π(i), as n→ ∞.

Proof See EE126, or MC Note.
Example



Convergence of πn
Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈X ,

πn(i)→ π(i), as n→ ∞.

Proof See EE126, or MC Note.
Example



Poll

Xn is a MC with the transition diagram as shown. Fix b = 1, and
let a have any value such that 0 < a < 1. Select all true
statements.
I MC is always irreducible.
I MC is always aperiodic.
I MC has a unique invariant distribution π.
I The long-term fraction of time spent in each state

converges to the invariant probability for that state.
I πn always converges to the invariant distribution π.



Calculating π
Let P be irreducible. How do we find π?

Example: P =

 0.8 0.2 0
0 0.3 0.7

0.6 0.4 0

 .
One has πP = π, i.e., π[P− I] = 0 where I is the identity matrix:

π

 0.8−1 0.2 0
0 0.3−1 0.7

0.6 0.4 0−1

= [0,0,0].

However, the sum of the columns of P− I is 0. This shows that these
equations are redundant: If all but the last one hold, so does the last one. Let
us replace the last equation by π1 = 1, i.e., ∑j π(j) = 1:

π

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

= [0,0,1].

Hence,

π = [0,0,1]

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

−1

≈ [0.55,0.26,0.19]



Interesting Example: How to Gamble, if You Must

Dubins and Savage, How to Gamble if You Must: Inequalities for Stochastic Processes. Dover Books on
Mathematics. Paperback - July 23, 2014. (Original Edition, 1965.)

Recall the ‘heads or tails game’:
At each step, you win 1 w.p. p and loose 1 w.p. q = 1−p.
You start with 10 and you want to maximize the probability of getting
to 100 before you get to 0.

In their celebrated masterpiece, Dubins and Savage proved that the
optimal strategy, if p ≤ 1/2, is the bold one, always betting the
maximum, and if p ≥ 1/2, then an optimal strategy is the timid one,
always betting the minimum.

There are relatively few problems for which one can prove such a
clean result. However, there is a systematic approach to calculate the
optimal strategy for many problems. We explain that approach next
on this problem.



Original Strategy
Recall the original strategy: bet 1 each time. Then,

..... .....
0 1 nn � 1 n + 1

p

q q = 1 � p

p p p p p

q q q q q

100

Let α(n) be the probability of reaching 100 before 0, starting
from n, for n = 0,1, . . . ,100.

α(0) = 0;α(100) = 1.
α(n) = pα(n+1)+qα(n−1),0 < n < 100.

Solving, we find

α(n) =
1−ρn

1−ρ100 with ρ = qp−1.

For p = 0.46, we get α(10)≈ 3.5×10−6.



Bold: Estimate

We can do better. Let us bet all we have. Then, with probability
p4 we have

10→ 20→ 40→ 80→ 160.

With p = 0.46, we see that we get to 100, at least with
probability (0.46)4 = 0.0448. This is much better than
3.5×10−6.

Thus, the probability of winning the game (i.e., getting to 100
before 0) is at least 0.0448 when playing bold.



Bold: Analysis
What is the exact probability of winning when playing bold? Here is
the corresponding MC:

The FSE for α(n) = Pr [T100 < T0 | X0 = n] are

α(10) = pα(20)+q0;α(20) = pα(40)+q0;α(40) = pα(80)+q0
α(80) = p1+qα(60);α(60) = p1+qα(20)

To solve, let α(10) = x . Then, we find

α(20) = p−1x ;α(40) = p−1
α(20) = p−2x

α(80) = p−1
α(40) = p−3x ;p−3x = p+qα(60);α(60) = p+qp−1x .

We solve the last two equations for x .
We find x = p2(1+q)/(p−2−q2)≈ 0.0735.



Summary

Markov Chains

I Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)
I FSE: β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).
I πn = π0Pn

I π is invariant iff πP = π

I Irreducible⇒ one and only one invariant distribution π

I Irreducible⇒ fraction of time in state i approaches π(i)
I Irreducible + Aperiodic⇒ πn→ π.
I Calculating π: One finds π = [0,0. . . . ,1]Q−1 where Q = · · · .


