
CS70: Lecture 24.

Markov Chains

1. Examples
2. Definition
3. First Passage Time
4. Distribution



Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a
random motion in {0,1}. Here, a is the probability that the state
changes in the next step.

0 1

Let’s simulate the Markov chain:



Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the
current state, with equal probabilities.

Let’s simulate the Markov chain:



Finite Markov Chain: Definition
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I A finite set of states: X = {1,2, . . . ,K}
I A probability distribution π0 on X : π0(i)≥ 0,∑i π0(i) = 1

I Transition probabilities: P(i , j) for i , j ∈X

P(i , j)≥ 0,∀i , j ; ∑j P(i , j) = 1,∀i
I {Xn,n ≥ 0} is defined so that

Pr [X0 = i] = π0(i), i ∈X (initial distribution)

Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X .



Poll

Xn is a MC with transition matrix P. Select all true statements.
I Row sum for each row of P is 1.
I Column sum of each column is 1.
I Sum of all elements of P is equal to the number of states of

the MC.
I X3 is independent of X0



First Passage Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips,
on average?

Let’s define a Markov chain:
I X0 = S (start)
I Xn = S for n ≥ 1, if last flip was T and no H yet
I Xn = E for n ≥ 1, if we already got H (end)



First Passage Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

Then,
β (S) = 1+qβ (S)+p0.

(See next slide.) Hence,

pβ (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p). We have rediscovered that the mean of
G(p) is 1/p.



First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E .
Then,

β (S) = 1+qβ (S)+p0.
Justification: Let N be the random number of steps until E , starting
from S. Let also N ′ be the number of steps until E , after the second
visit to S. Finally, let Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Now, Z and N ′ are independent. Also, E [N ′] = E [N] = β (S). Hence,
taking expectation,

β (S) = E [N] = 1+(1−p)E [N ′]+p0 = 1+qβ (S)+p0.



First Passage Time - Example 2

Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

H T H T T T H T H T H T T H T H H

Let’s define a Markov chain:

I X0 = S (start)

I Xn = E , if we already got two consecutive Hs (end)

I Xn = T , if last flip was T and we are not done

I Xn = H, if last flip was H and we are not done



First Passage Time - Example 2

Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average? Here is a picture:

Let β (i) be the average time from state i until the MC hits state E .

We claim that (these are called the first step equations)

β (S) = 1+pβ (H)+qβ (T )

β (H) = 1+p0+qβ (T )

β (T ) = 1+pβ (H)+qβ (T ).

Solving, we find β (S) = 2+3qp−1+q2p−2. (E.g., β (S) = 6 if p = 1/2.)



First Passage Time - Example 2

Let us justify the first step equation for β (T ). The others are similar.

Let N(T ) be the random number of steps, starting from T until the MC
hits E . Let also N(H) be defined similarly. Finally, let N ′(T ) be the
number of steps after the second visit to T until the MC hits E . Then,

N(T ) = 1+Z ×N(H)+(1−Z )×N ′(T )

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N ′(T ) are independent, taking expectations, we get

E [N(T )] = 1+pE [N(H)]+qE [N ′(T )],

i.e.,
β (T ) = 1+pβ (H)+qβ (T ).



First Passage Time - Example 3
You roll a balanced six-sided die until the sum of the last two rolls is 8.
How many times do you have to roll the die, on average?

β (S)=1+
1
6

6

∑
j=1

β (j);β (1)=1+
1
6

6

∑
j=1

β (j);β (i)=1+
1
6 ∑

j=1,...,6;j 6=8−i
β (j), i =2, . . . ,6.

Symmetry: β (2) = · · ·= β (6) =: γ. Also, β (1) = β (S). Thus,

β (S) = 1+(5/6)γ +β (S)/6; γ = 1+(4/6)γ +(1/6)β (S).

⇒ ···β (S) = 8.4.



First Passage Time - Example 4

You try to go up a ladder that has 20 rungs. At each time step, you succeed
in going up by one rung with probability p = 0.9. Otherwise, you fall back to
the ground. How many time steps does it take you to reach the top of the
ladder, on average?

β (n) = 1+pβ (n+1)+qβ (0),0≤ n < 19

β (19) = 1+p0+qβ (0)

⇒ β (0) =
p−20−1

1−p
≈ 72.

See MC Note for algebra.



First Passage Time - Example 5
You play a game of “heads or tails” using a biased coin that yields
‘heads’ with probability p < 0.5. You start with $10. At each step, if
the flip yields ‘heads’, you earn $1. Otherwise, you lose $1. What is
the probability that you reach $100 before $0?

Let α(n) be the probability of reaching 100 before 0, starting from n,
for n = 0,1, . . . ,100.

α(0) = 0;α(100) = 1.
α(n) = pα(n+1)+qα(n−1),0 < n < 100.

⇒ α(n) =
1−ρn

1−ρ100 with ρ = qp−1. (See MC Note)



First Passage Time - Example 5
You play a game of “heads or tails” using a biased coin that yields ‘heads’
with probability 0.48. You start with $10. At each step, if the flip yields
‘heads’, you earn $1. Otherwise, you lose $1. What is the probability that you
reach $100 before $0?

Morale of example: Be careful!



Summary of First Step Equations
Let Xn be a MC on X and A,B ⊂X with A∩B = /0. Define

TA =min{n ≥ 0 | Xn ∈ A} and TB =min{n ≥ 0 | Xn ∈ B}.
Let

β (i) = E [TA | X0 = i] and α(i) = Pr [TA < TB | X0 = i], i ∈X .

The FSE are

β (i) = 0, i ∈ A
β (i) = 1+∑

j
P(i , j)β (j), i /∈ A

α(i) = 1, i ∈ A
α(i) = 0, i ∈ B
α(i) = ∑

j
P(i , j)α(j), i /∈ A∪B.



Poll

Xn is a MC. Select all true statements.
I FSEs can be used for calculating hitting time and

absorption probabilities.
I FSEs for hitting time are of the form of 1 + weighted sum of

hitting times from the neighbors.
I FSEs for absorption probabilities are of the form of 1 +

weighted sum of absorption probabilities from the
neighbors.



Distribution of Xn
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m + 1Let πm(i) = Pr [Xm = i], i ∈X . Note that

Pr [Xm+1 = j] = ∑
i

Pr [Xm+1 = j ,Xm = i]

= ∑
i

Pr [Xm = i]Pr [Xm+1 = j | Xm = i]

= ∑
i

πm(i)P(i , j).
Hence,

πm+1(j) = ∑
i

πm(i)P(i , j),∀j ∈X .

With πm,πm+1 as a row vectors, these identities are written as πm+1 = πmP.

Thus, π1 = π0P, π2 = π1P = π0PP = π0P2, . . . . Hence,

πn = π0Pn,n ≥ 0.



Distribution of Xn
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⇡m(1)

⇡m(2)

⇡m(3)

⇡m(1)

⇡m(2)

⇡m(3)

⇡0 = [0, 1, 0]⇡0 = [1, 0, 0]

As m increases, πm converges to a vector that does not depend on π0.



Distribution of Xn
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⇡0 = [0.5, 0.3, 0.2]
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⇡0 = [1, 0, 0]

As m increases, πm converges to a vector that does not depend on π0.



Distribution of Xn
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As m increases, πm converges to a vector that depends on π0 (obviously,
since πm(1) = π0(1),∀m).



Poll

Xn is a MC. Select all true statements.
I ”Steady State” probabilities are always independent of the

initial probability distribution.
I Under certain conditions, ”Steady State” probabilities are

indpependent of the initial probability distribution.



Summary

Markov Chains

I Definition: Markov Chains: State Space, Initial Distribution,
Transition Probabilities

I FSEs: Hitting Times, Probability of A before B
I Distribution at time n: May or may not depend on the initial

distribution.


