CS70: Lecture 23.

‘ Conditional Expectation

1. Conditional Expectation (CE)
2. Applications: Diluting, Mixing, Wald’s Identity
3. CE = MMSE (Minimum Mean Squares Estimate)



Conditional Expectation: Motivation

There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).
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Our goal: Derive the best estimate of Y given X!

That is, find the function g(-) so that g(X) is the best guess
about Y given X.

Ambitious! Can it be done? Amazingly, yes!



Conditional Expectation: Intuition

Y
A
4 oy
3 o 5
) 5 c
1 > —
> X

1 2 3

Without any observation, our guess for Y is E[Y] =2.3.

Assume now we observe X. We can calculate
L[Y|X]=a+bX~21+0.1x..

A better guess when X =1 is 2; when X =2: 3; when X =3: 2.



Conditional Expectation: Intuition
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Here, E[Y|X = 1] is the mean value of Y given that X =1. Also,
E[Y|X = 2] is the mean value of Y given that X =2 and E[Y|X = 3]

is the mean value of Y given that X = 3.

When we know that X =1, Y has a new distribution: Y is uniform in

{1,2,3}.

Thus, our guess is E[Y|X =1]=1(1/3)+2(1/3)+3(1/3) = 2.



Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[Y[X]=9(X)
where
9(x):=E[Y|X=x]:=) yPr[Y =y|X =x],
y
with PrlY = y|X = x] := 2t

Theorem: E[Y|X] is the best guess about Y given X.
That is, for any function h(-), one has

E[(Y —h(X))?] = E[(Y — E[Y|X])?].

Proof: Later.



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

E[E[YIX]H(X)]

Y E[YIX = x]f(x)Pr[X = X]

= Z[ny(x)Pr[Y: y|X = X]]Pr[X = x]
Xy

= Y)Y vi(x)PriX=x,Y =y]
Xy

= E[YH(X)).



Additonal Properties of Conditional Expectation
Theorem
(a) Linearity:
Elas Ys +a, Yo | X] = a1 E[ V4| X] + & E[ Ya | X].
(b) Factoring Known Values:
E[h(X)Y|X] = h(X)E[Y|X].

(¢) Smoothing:
E(E[Y|X]) = E(Y).
(d) Independence: If Y and X are independent, then
E[Y|X] = E(Y).

Proof:
Follows easily from the definiton of CE. See Note 20 for a different
proof using the projection property. O



Calculating E[Y|X]

Let X, Y,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E[2+5X+7XY +11X2 +13X322|X].

We find

E[24+5X+7XY +11X% +13X322|X]
=24+ 5X +7XE[Y|X]+11X? +13X3E[Z%| X]
=24+ 5X+7XE[Y]+11X2 +13X3E[Z?]
=24+ 5X+11X2+13X3(var[Z] + E[Z)?)
=245X+11X24+13X3,



Application: Diluting
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At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let X, be the number of red balls in the urn at step n. What is
E[X,]?
Given X, =m, X,y =m—1w.p. m/N (if you pick a red ball) and
Xn1 = motherwise. Hence,
E[Xn1|Xn =m] = m—(m/N) = m(N—1)/N = Xup,
with p := (N—1)/N. Consequently,
E[Xn11] = E[EXn:1 X0l = pE[Xal . n > 1.

N-1

N

— E[Xp] =p" TE[X1] = N( =1 n>1.



Diluting

Here is a plot:
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Application: Mixing
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At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let X, be the number of red balls in the bottom urn
at step n. Whatis E[X;]?

Given Xp,=m, Xpp1 =m+1wp. pand X,.1 =m—1w.p. g

where p = (1 —m/N)? (B goes up, R down) and g = (m/N)? (R goes
up, B down).

Thus,



Mixing

We saw that E[X,.1|Xn] =1+ pXn, p:=(1—-2/N). Hence,

Hence,

E[Xn 1] =1+ pE[Xp]

E[Xe] =14pN;E[Xs] =1+p(1+pN)=1+p+p°N
EXs)=1+p(1+p+p°N)=1+p+p2+p°N
E[Xp]=1+p+---+p " 2+p"'N.

1 _pn—1

E[X,] = +p"'N,n>1.



Application: Mixing

Here is the plot.
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Application: Wald’s Identity

Theorem Wald’s Identity

Assume that Xi, X2,... and Z are independent, where
Z takes values in {0,1,2,...}

and E[X,]=pu foralln>1.

Then,
E[X1 —i-‘--—i-Xz] = LLE[Z]

Proof:

E[Xi+---+ Xz|Z = k] = uk.

Thus, E[Xi+---+ Xz|Z] = uZ.

Hence, E[Xi +-- -+ Xz| = E[uZ] = nE[Z].

O



CE = MMSE

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].
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CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
E[(Y - g(X))7.

Proof:

Let h(X) be any function of X. Then

EI(Y —g(X)+9(X) —h(X))?]
EI(Y = 9(X))?1+ El(g(X) — h(X))?]
+2E[(Y = g(X))(g(X) = h(X))].

EI(Y —h(X))?]

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y - h(X))?] = E[(Y —g(X))?].



E[Y|X] and L[Y|X] as projections

v

e+ dX,c,d € R}

- h(X)
E[Y|X]

Vo Lyix] {9(X)g(): R— R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.



Summary

‘ Conditional Expectation ‘

» Definition: E[Y[X]: =Y, yPr[Y = y|X = x]
» Properties: Linearity,
Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]
» Some Applications:
» Calculating E[Y|X]
» Diluting
» Mixing
> Wald
» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(*)



