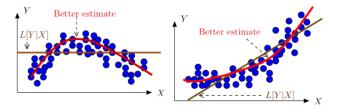
Conditional Expectation

- 1. Conditional Expectation (CE)
- 2. Applications: Diluting, Mixing, Wald's Identity
- 3. CE = MMSE (Minimum Mean Squares Estimate)

Conditional Expectation: Motivation

There are many situations where a good guess about Y given X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

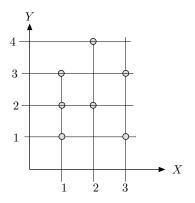


Our goal: Derive the best estimate of Y given X!

That is, find the function $g(\cdot)$ so that g(X) is the best guess about *Y* given *X*.

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation: Intuition

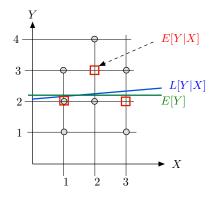


Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

Conditional Expectation: Intuition



Here, E[Y|X = 1] is the mean value of Y given that X = 1. Also, E[Y|X = 2] is the mean value of Y given that X = 2 and E[Y|X = 3] is the mean value of Y given that X = 3.

When we know that X = 1, Y has a new distribution: Y is uniform in $\{1,2,3\}$.

Thus, our guess is E[Y|X = 1] = 1(1/3) + 2(1/3) + 3(1/3) = 2.

Conditional Expectation

Definition Let *X* and *Y* be RVs on Ω . The conditional expectation of *Y* given *X* is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} y Pr[Y = y|X = x],$$

with $Pr[Y = y|X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}.$

Theorem: E[Y|X] is the best guess about *Y* given *X*. That is, for any function $h(\cdot)$, one has

$$E[(Y-h(X))^2] \ge E[(Y-E[Y|X])^2].$$

Proof: Later.

Projection Property

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

E[Yf(X)] = E[E[Y|X]f(X)]

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

Proof:

$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X = x]f(x)Pr[X = x]$$

=
$$\sum_{x} [\sum_{y} yf(x)Pr[Y = y|X = x]]Pr[X = x]$$

=
$$\sum_{x} \sum_{y} yf(x)Pr[X = x, Y = y]$$

=
$$E[Yf(X)].$$

Additonal Properties of Conditional Expectation

Theorem

(a) Linearity:

$$E[a_1Y_1 + a_2Y_2|X] = a_1E[Y_1|X] + a_2E[Y_2|X].$$

(b) Factoring Known Values:

E[h(X)Y|X] = h(X)E[Y|X].

(c) Smoothing:

E(E[Y|X]) = E(Y).

(d) Independence: If Y and X are independent, then

E[Y|X] = E(Y).

Proof:

Follows easily from the definiton of CE. See Note 20 for a different proof using the projection property.

Calculating E[Y|X]

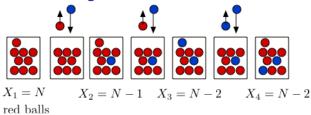
Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

We find

$$\begin{split} E[2+5X+7XY+11X^2+13X^3Z^2|X] \\ &= 2+5X+7XE[Y|X]+11X^2+13X^3E[Z^2|X] \\ &= 2+5X+7XE[Y]+11X^2+13X^3E[Z^2] \\ &= 2+5X+11X^2+13X^3(var[Z]+E[Z]^2) \\ &= 2+5X+11X^2+13X^3. \end{split}$$

Application: Diluting



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m - 1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n \rho$$

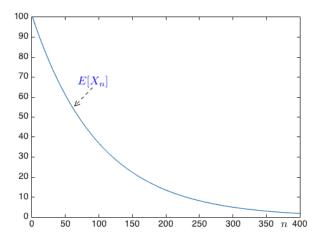
with $\rho := (N-1)/N$. Consequently,

$$E[X_{n+1}] = E[E[X_{n+1}|X_n]] = \rho E[X_n], n \ge 1.$$

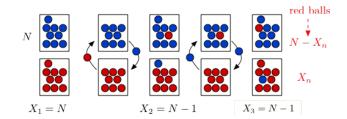
$$\implies E[X_n] = \rho^{n-1} E[X_1] = N(\frac{N-1}{N})^{n-1}, n \ge 1.$$

Diluting

Here is a plot:



Application: Mixing



At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step *n*. What is $E[X_n]$?

Given
$$X_n = m$$
, $X_{n+1} = m+1$ w.p. *p* and $X_{n+1} = m-1$ w.p. *q*

where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus,

 $E[X_{n+1}|X_n] = X_n + \rho - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \ \rho := (1 - 2/N).$

Mixing

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho(1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho(1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

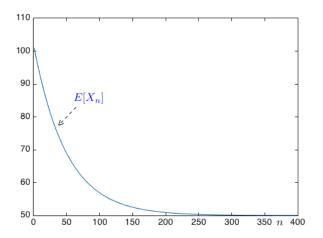
$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

Application: Mixing

Here is the plot.



Application: Wald's Identity

Theorem Wald's Identity Assume that $X_1, X_2, ...$ and Z are independent, where Z takes values in $\{0, 1, 2, ...\}$ and $E[X_n] = \mu$ for all $n \ge 1$. Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

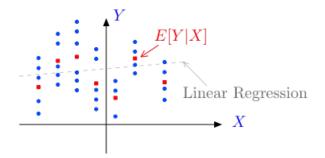
Proof:

 $E[X_1 + \dots + X_Z | Z = k] = \mu k.$ Thus, $E[X_1 + \dots + X_Z | Z] = \mu Z.$ Hence, $E[X_1 + \dots + X_Z] = E[\mu Z] = \mu E[Z].$

CE = MMSE

Theorem E[Y|X] is the 'best' guess about Y based on X. Specifically, it is the function g(X) of X that

minimizes $E[(Y - g(X))^2]$.



CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y - g(X))^2]$. **Proof:**

Let h(X) be any function of X. Then

$$E[(Y-h(X))^{2}] = E[(Y-g(X)+g(X)-h(X))^{2}]$$

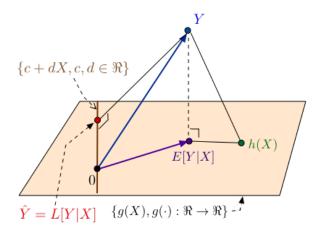
= $E[(Y-g(X))^{2}]+E[(g(X)-h(X))^{2}]$
+ $2E[(Y-g(X))(g(X)-h(X))].$

But,

E[(Y - g(X))(g(X) - h(X))] = 0 by the projection property.

Thus, $E[(Y - h(X))^2] \ge E[(Y - g(X))^2].$

E[Y|X] and L[Y|X] as projections



L[Y|X] is the projection of Y on $\{a+bX, a, b \in \mathfrak{R}\}$: LLSE E[Y|X] is the projection of Y on $\{g(X), g(\cdot) : \mathfrak{R} \to \mathfrak{R}\}$: MMSE.

Summary

Conditional Expectation

• Definition:
$$E[Y|X] := \sum_{y} y Pr[Y = y|X = x]$$

- Properties: Linearity, $Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$
- Some Applications:
 - Calculating E[Y|X]
 - Diluting
 - Mixing
 - Wald

► MMSE: E[Y|X] minimizes $E[(Y - g(X))^2]$ over all $g(\cdot)$