CS70: Lecture 23.

‘ Conditional Expectation

1. Conditional Expectation (CE)
2. Applications: Diluting, Mixing, Wald’s Identity
3. CE = MMSE (Minimum Mean Squares Estimate)

Conditional Expectation: Motivation
There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).
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Bettey estimat

Our goal: Derive the best estimate of Y given X!

That is, find the function g(-) so that g(X) is the best guess
about Y given X.

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation: Intuition
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Without any observation, our guess for Y is E[Y] =2.3.

Assume now we observe X. We can calculate
L[Y|X]=a+bX~21+0.1x..

A better guess when X =1 is 2; when X = 2: 3; when X =3: 2.

Conditional Expectation: Intuition
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Here, E[Y|X = 1] is the mean value of Y given that X = 1. Also,
E[Y|X = 2] is the mean value of Y given that X =2 and E[Y|X = 3]
is the mean value of Y given that X = 3.

When we know that X = 1, Y has a new distribution: Y is uniform in
{1,2,3}.
Thus, our guess is E[Y|X =1]=1(1/3)+2(1/3)+3(1/3)=2.

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[Y|X]=9(X)
where
g(x) = E[Y|X =x]:= Y} yPr[Y = y|X =,
y
with PrY = y|X = x] := PR,
Theorem: E[Y|X] is the best guess about Y given X.
That is, for any function h(-), one has
E[(Y —h(X))?] > E[(Y — E[Y|X])?].

Proof: Later.

Projection Property
The claim is that

E[(Y — E[Y|X])F(X)] = 0,V£(.).

That is,
E[YH(X)] = E[ETY[X]{(X)]

In particular, choosing f(x) = 1, we get
E[Y] = EIE[YIX].
Proof:
EEYIXIFX)] = Y E[YIX = xf(x)Pr{X = x]
= ;X,[ny(X)Pf[Y =y|X=X]]Pr[X =x]
- ;;yyf(x)/vr[x —x.Y=y]

= E[Yi(X)].




Additonal Properties of Conditional Expectation
Theorem
(a) Linearity:
Elat Y1 + a2 Yz|X] = a1 E[Y1|X] + a2 E[ Y2| X].
(b) Factoring Known Values:
E[h(X) Y|X] = h(X)E[Y|X].

(c) Smoothing:
E(E[YIX]) = E(Y).
(d) Independence: If Y and X are independent, then
E[Y|X]= E(Y).

Proof:
Follows easily from the definiton of CE. See Note 20 for a different
proof using the projection property.
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Calculating E[Y|X]

Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E[2+5X+7XY +11X2+13x322|X].

We find

E[2+5X+7XY +11X2+13X322|X]
=24+ 5X+7XE[Y|X]+11X2 +13X3E[22| X]
=24+5X+7XE[Y]+11X? +13X3E[Z?]
=245X+11X2+13X3(var|Z] + E[Z]?)
=2+5X+11X24+13X5.

Application: Diluting
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X,=N—-1 X3=N-2 X;=N-2

red balls

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let X, be the number of red balls in the urn at step n. What is
E[Xn]?
Given X, = m, Xp.1 = m—1w.p. m/N (if you pick a red ball) and
Xn+1 = m otherwise. Hence,

E[Xpi1|Xn=ml=m—(m/N)=m(N—-1)/N = X,p,
with p := (N—1)/N. Consequently,

E[Xn+1] = E[E[Xns1|Xn]l = pE[Xn],n 2 1.

N—-1

= E[Xp] = p™ TE[X1] = N( N

Y=t n>1.

Diluting
Here is a plot:
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Application: Mixing

red balls
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X, =N Xy=N-—1 X;=N-1

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let X, be the number of red balls in the bottom urn
at step n. What is E[X;]?

Given X, =m, Xp .1 =m+1wp. pand X,,.1 =m—1w.p. q
where p = (1 —m/N)? (B goes up, R down) and g = (m/N)? (R goes
up, B down).

Thus,

E[Xnit | Xn] = Xo+p— G = Xo+1—2X/N=1+pXpn, p:=(1-2/N).

Mixing

We saw that E[X1|Xn] =1+pXn, p :=(1—2/N). Hence,

E[Xni1]=1+pE[Xd]
E[Xo] =1+ pN;E[Xs] = 1+ p(1+pN) =14p+p°N
E[Xa]=14+p(14+p+p?N)=1+p+p2+p3N
EXp)l=1+p+-+p"2+p"'N.
Hence,
1*pn71 n-1
E[X,] = o, P N,n>1.




Application: Mixing

Here is the plot.
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Application: Wald’s |dentity

Theorem Wald'’s Identity

CE = MMSE

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Assume that Xi, Xz, ... and Z are independent, where Specifically, it is the function g(X) of X that
Z takes values in {0,1,2,...} L 5
1o minimizes E[(Y — g(X))].
\ and E[Xp)=pu foralln>1.
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CE = MMSE E[Y|X] and L[Y|X] as projections Summary

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
EI(Y —g(X))?]-

Proof:

Let h(X) be any function of X. Then

EI(Y —h(X))?] EI(Y — g(X) +g(X) — h(X))?]
EI(Y — 9(X))’]+ E[(9(X) — h(X))?]

+2E[(Y - g(X))(g(X) — h(X))].

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y —h(X))2] > E[(Y - g(X))?].
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L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.

‘ Conditional Expectation ‘

» Definition: E[Y|X]:=¥, yPr[Y = y|X =]
» Properties: Linearity,
Y — E[Y|X] L h(X); E[E[Y|X]) = E[Y]
» Some Applications:
» Calculating E[Y|X]
» Diluting
» Mixing
> Wald
» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)




