
CS70: Lecture 23.

Conditional Expectation

1. Conditional Expectation (CE)
2. Applications: Diluting, Mixing, Wald’s Identity
3. CE = MMSE (Minimum Mean Squares Estimate)

Conditional Expectation: Motivation

There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).

Our goal: Derive the best estimate of Y given X !

That is, find the function g(·) so that g(X ) is the best guess
about Y given X .

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation: Intuition
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Without any observation, our guess for Y is E [Y ] = 2.3.

Assume now we observe X . We can calculate
L[Y |X ] = a + bX ≈ 2.1 + 0.1x . .

A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

.

Conditional Expectation: Intuition
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Here, E [Y |X = 1] is the mean value of Y given that X = 1. Also,
E [Y |X = 2] is the mean value of Y given that X = 2 and E [Y |X = 3]
is the mean value of Y given that X = 3.

When we know that X = 1, Y has a new distribution: Y is uniform in
{1,2,3}.
Thus, our guess is E [Y |X = 1] = 1(1/3) + 2(1/3) + 3(1/3) = 2.

Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of
Y given X is defined as

E [Y |X ] = g(X )

where
g(x) := E [Y |X = x ] := ∑

y
yPr [Y = y |X = x ],

with Pr [Y = y |X = x ] := Pr [X=x ,Y=y ]
Pr [X=x ] .

Theorem: E [Y |X ] is the best guess about Y given X .

That is, for any function h(·), one has

E [(Y −h(X ))2]≥ E [(Y −E [Y |X ])2].

Proof: Later.

Projection Property
The claim is that

E [(Y −E [Y |X ])f (X )] = 0,∀f (.).

That is,
E [Yf (X )] = E [E [Y |X ]f (X )]

.
In particular, choosing f (x) = 1, we get

E [Y ] = E [E [Y |X ]].

Proof:

E [E [Y |X ]f (X )] = ∑
x

E [Y |X = x ]f (x)Pr [X = x ]

= ∑
x

[∑
y

yf (x)Pr [Y = y |X = x ]]Pr [X = x ]

= ∑
x

∑
y

yf (x)Pr [X = x ,Y = y ]

= E [Yf (X )].



Additonal Properties of Conditional Expectation

Theorem

(a) Linearity:

E [a1Y1 + a2Y2|X ] = a1E [Y1|X ] + a2E [Y2|X ].

(b) Factoring Known Values:

E [h(X )Y |X ] = h(X )E [Y |X ].

(c) Smoothing:
E(E [Y |X ]) = E(Y ).

(d) Independence: If Y and X are independent, then

E [Y |X ] = E(Y ).

Proof:
Follows easily from the definiton of CE. See Note 20 for a different
proof using the projection property.

Calculating E [Y |X ]

Let X ,Y ,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ].

We find

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ]

= 2 + 5X + 7XE [Y |X ] + 11X 2 + 13X 3E [Z 2|X ]

= 2 + 5X + 7XE [Y ] + 11X 2 + 13X 3E [Z 2]

= 2 + 5X + 11X 2 + 13X 3(var [Z ] + E [Z ]2)

= 2 + 5X + 11X 2 + 13X 3.

Application: Diluting

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let Xn be the number of red balls in the urn at step n. What is
E [Xn]?

Given Xn = m, Xn+1 = m−1 w.p. m/N (if you pick a red ball) and
Xn+1 = m otherwise. Hence,

E [Xn+1|Xn = m] = m− (m/N) = m(N−1)/N = Xnρ,

with ρ := (N−1)/N. Consequently,

E [Xn+1] = E [E [Xn+1|Xn]] = ρE [Xn],n ≥ 1.

=⇒ E [Xn] = ρn−1E [X1] = N(
N−1

N
)n−1,n ≥ 1.

Diluting

Here is a plot:

Application: Mixing

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let Xn be the number of red balls in the bottom urn
at step n. What is E [Xn]?

Given Xn = m, Xn+1 = m + 1 w.p. p and Xn+1 = m−1 w.p. q

where p = (1−m/N)2 (B goes up, R down) and q = (m/N)2 (R goes
up, B down).

Thus,
E [Xn+1|Xn] = Xn + p−q = Xn + 1−2Xn/N = 1 + ρXn, ρ := (1−2/N).

Mixing

We saw that E [Xn+1|Xn] = 1 + ρXn, ρ := (1−2/N). Hence,

E [Xn+1] = 1 + ρE [Xn]

E [X2] = 1 + ρN;E [X3] = 1 + ρ(1 + ρN) = 1 + ρ + ρ2N
E [X4] = 1 + ρ(1 + ρ + ρ2N) = 1 + ρ + ρ2 + ρ3N
E [Xn] = 1 + ρ + · · ·+ ρn−2 + ρn−1N.

Hence,

E [Xn] =
1−ρn−1

1−ρ
+ ρn−1N,n ≥ 1.



Application: Mixing

Here is the plot.

Application: Wald’s Identity

Theorem Wald’s Identity

Assume that X1,X2, . . . and Z are independent, where
Z takes values in {0,1,2, . . .}
and E [Xn] = µ for all n ≥ 1.

Then,
E [X1 + · · ·+ XZ ] = µE [Z ].

Proof:

E [X1 + · · ·+ XZ |Z = k ] = µk .

Thus, E [X1 + · · ·+ XZ |Z ] = µZ .

Hence, E [X1 + · · ·+ XZ ] = E [µZ ] = µE [Z ].

CE = MMSE

Theorem
E [Y |X ] is the ‘best’ guess about Y based on X .

Specifically, it is the function g(X ) of X that

minimizes E [(Y −g(X ))2].

CE = MMSE

Theorem CE = MMSE

g(X ) := E [Y |X ] is the function of X that minimizes
E [(Y −g(X ))2].
Proof:
Let h(X ) be any function of X . Then

E [(Y −h(X ))2] = E [(Y −g(X ) + g(X )−h(X ))2]

= E [(Y −g(X ))2] + E [(g(X )−h(X ))2]

+2E [(Y −g(X ))(g(X )−h(X ))].

But,

E [(Y −g(X ))(g(X )−h(X ))] = 0 by the projection property.

Thus, E [(Y −h(X ))2]≥ E [(Y −g(X ))2].

E [Y |X ] and L[Y |X ] as projections

L[Y |X ] is the projection of Y on {a + bX ,a,b ∈ℜ}: LLSE

E [Y |X ] is the projection of Y on {g(X ),g(·) : ℜ→ℜ}: MMSE.

Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: Linearity,
Y −E [Y |X ]⊥ h(X ); E [E [Y |X ]] = E [Y ]

I Some Applications:
I Calculating E [Y |X ]
I Diluting
I Mixing
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)


