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Confidence Intervals: Example

I Flip a coin n times. Let An be the fraction of Hs.

I We know that p := Pr [H]≈ An for n large (WLLN).

I Can we find a such that Pr [p ∈ [An−a,An +a]]≥ 95%?

I If so, we say that

[An−a,An +a] is a 95%- Confidence Interval for p.

Using Chebyshev, we will see that a = 2.25 1√
n works. Thus

[An−
2.25√

n
,An +

2.25√
n
] is a 95%-CI for p.

Example: If n = 1500, then Pr [p ∈ [An−0.06,An +0.06]]≥ 95%.

In fact, we will see later that a = 1√
n works, so that with n = 1,500 one has

Pr [p ∈ [An−0.03,An +0.03]]≥ 95%.

Confidence Intervals: Result

Theorem:
Let Xn be i.i.d. with mean µ and variance σ2.
Define An = X1+···+Xn

n . Then,

Pr [µ ∈ [An−4.5
σ√
n
,An +4.5

σ√
n
]]≥ 95%.

Thus, [An−4.5 σ√
n ,An +4.5 σ√

n ]] is a 95%-CI for µ.

Example: Let Xn = 1{ coin n yields H}. Then

µ = E [Xn] = p := Pr [H]. Also, σ2 = var(Xn) = p(1−p)≤ 1
4
.

Hence, [An−4.51/2√
n ,An +4.51/2√

n ]] is a 95%-CI for p.



Confidence Interval: Analysis

Proof:
We prove the theorem, i.e., that An±4.5σ/

√
n is a 95%-CI for µ.

From Chebyshev:

Pr [|An−µ| ≥ 4.5σ/
√

n]≤ var(An)

[4.5σ/
√

n]2

≤ σ2/n
20σ2/n

= 5%.

Thus,
Pr [|An−µ| ≤ 4.5σ/

√
n]≥ 95%.

Hence,
Pr [µ ∈ [An−4.5σ/

√
n,An +4.5σ/

√
n]]≥ 95%.

Linear Regression: Preamble

Recall that the best guess about Y , if we know only the distribution of
Y , is E [Y ].

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Let’s review one proof of that fact.

Let Ŷ := Y −E [Y ]. Then, E [Ŷ ] = 0. So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ]+E [Y ]−a)2]

= E [(Ŷ +c)2] with c = E [Y ]−a

= E [Ŷ 2 +2Ŷ c+c2] = E [Ŷ 2]+2E [Ŷ c]+c2

= E [Ŷ 2]+0+c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.

Linear Regression: Preamble

Here is a picture that summarizes the calculation.

Y

E[Y ]

Ŷ

Y � a

a

(Pythagoras)

c

E[Ŷ c] = 0 , Ŷ ? c

Ŷ = Y � E[Y ]
c = E[Y ] � a

E[(Y � a)2] = E[(Ŷ + c)2]

= E[Ŷ 2 + 2cŶ + c2]

= E[Ŷ 2] + c2

Linear Regression: Preamble

Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y ?

The idea is to use a function g(X ) of the observation to
estimate Y .

The simplest function g(X ) is a constant that does not depend
of X .

The next simplest function is linear: g(X ) = a+bX .

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X ).

Linear Regression: Motivation
Example 1: 100 people.

Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3+106.5X . (X in meters, Y in kg.)

Best linear fit: Linear Regression.

Motivation

Example 2: 15 people.

We look at two attributes: (Xn,Yn) of person n, for n = 1, . . . ,15:

The line Y = a+bX is the linear regression.



History

Galton produced over 340 papers and books. He created the statistical
concept of correlation.

In an effort to reach a wider audience, Galton worked on a novel entitled
Kantsaywhere. The novel described a utopia organized by a eugenic religion,
designed to breed fitter and smarter humans.

The lesson is that smart people can also be stupid.

Covariance

Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ]+E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ]+E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].

Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y )> 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y )< 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.

Examples of Covariance

E [X ] = 1×0.15+2×0.4+3×0.45 = 1.9
E [X 2] = 12×0.15+22×0.4+32×0.45 = 5.8
E [Y ] = 1×0.2+2×0.6+3×0.2 = 2
E [XY ] = 1×0.05+1×2×0.1+ · · ·+3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1.05
var [X ] = E [X 2]−E [X ]2 = 2.19.

Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent⇒ cov(X ,Y ) = 0
(c) cov(a+X ,b+Y ) = cov(X ,Y )
(d) cov(aX +bY ,cU +dV ) = ac.cov(X ,U)+ad .cov(X ,V )

+bc.cov(Y ,U)+bd .cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX +bY ,cU +dV ) = E [(aX +bY )(cU +dV )]

= ac.E [XU]+ad .E [XV ]+bc.E [YU]+bd .E [YV ]

= ac.cov(X ,U)+ad .cov(X ,V )+bc.cov(Y ,U)+bd .cov(Y ,V ).

Linear Regression: Non-Bayesian
Definition
Given the samples {(Xn,Yn),n = 1, . . . ,N}, the Linear
Regression of Y over X is

Ŷ = a+bX

where (a,b) minimize

N

∑
n=1

(Yn−a−bXn)
2.

Thus, Ŷn = a+bXn is our guess about Yn given Xn. The
squared error is (Yn− Ŷn)

2. The LR minimizes the sum of the
squared errors.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a non-Bayesian formulation: there is no prior.



Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
Pr [X = x ,Y = y ], the Linear Least Squares Estimate of Y given
X is

Ŷ = a+bX =: L[Y |X ]

where (a,b) minimize

g(a,b) := E [(Y −a−bX )2].

Thus, Ŷ = a+bX is our guess about Y given X . The squared
error is (Y − Ŷ )2. The LLSE minimizes the expected value of
the squared error.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a Bayesian formulation: there is a prior.

LR: Non-Bayesian or Uniform?

Observe that

1
N

N

∑
n=1

(Yn−a−bXn)
2 = E [(Y −a−bX )2]

where one assumes that

(X ,Y ) = (Xn,Yn), w.p.
1
N

for n = 1, . . . ,N.

That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X ,Y ) is uniform on the set of
observed samples.

Thus, we can study the two cases LR and LLSE in one shot.

However, the interpretations are different!

LLSE

Theorem
Consider two RVs X ,Y with a given distribution
Pr [X = x ,Y = y ]. Then,

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). Hence, E [Y − Ŷ ] = 0.

Also, E [(Y − Ŷ )X ] = 0, after a bit of algebra. (See next slide.)

Hence, by combining the two brown equalities,
E [(Y − Ŷ )(c+dX )] = 0. Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b.
Indeed: Ŷ = α +βX for some α,β , so that Ŷ −a−bX = c+dX for
some c,d . Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]

= E [(Y − Ŷ )2]+E [(Ŷ −a−bX )2]+0≥ E [(Y − Ŷ )2].

This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
Thus Ŷ is the LLSE.

A Bit of Algebra

Y − Ŷ = (Y −E [Y ])− cov(X ,Y )
var [X ] (X −E [X ]).

Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.

Note that
E [(Y − Ŷ )X ] = E [(Y − Ŷ )(X −E [X ])],

because E [(Y − Ŷ )E [X ]] = 0.

Now,

E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].

A picture

The following picture explains the algebra:

We saw that E [Y − Ŷ ] = 0. In the picture, this says that Y − Ŷ ⊥ c, for any c.

We also saw that E [(Y − Ŷ )X ] = 0. In the picture, this says that Y − Ŷ ⊥ X .

Hence, Y − Ŷ is orthogonal to the plane {c+dX ,c,d ∈ℜ}.
Consequently, Y − Ŷ ⊥ Ŷ −a−bX . Pythagoras then says that Y is closer to
Ŷ than a+bX .

That is, Ŷ is the projection of Y onto the plane.

LLSE
Theorem
Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 2:
First assume that E [X ] = 0 and E [Y ] = 0. Then,

g(a,b) := E [(Y −a−bX )2]

= E [Y 2 +a2 +b2X2−2aY −2bXY +2abX ]

= a2 +E [Y 2]+b2E [X2]−2aE [Y ]−2bE [XY ]+2abE [X ]

= a2 +E [Y 2]+b2E [X2]−2bE [XY ].

We set the derivatives of g w.r.t. a and b equal to zero.

0 =
∂

∂a
g(a,b) = 2a⇒ a = 0.

0 =
∂

∂b
g(a,b) = 2bE [X2]−2E [XY ]

⇒ b = E [XY ]/E [X2] = cov(X ,Y )/var(X ).



LLSE
Theorem
Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 2:
In the general case (i.e., when E [X ] and E [Y ] may be nonzero),

Y −a−bX = Y −E [Y ]− (a−E [Y ])−b(X −E [X ])+bE [X ]

= Y −E [Y ]− (a−E [Y ]+bE [X ])−b(X −E [X ])

= Y −E [Y ]−c−b(X −E [X ])

with c = a−E [Y ]+bE [X ].
From the first part, we know that the best values of c and b are

c = 0 and b = cov(X −E [X ],Y −E [Y ])/var(X −E [X ]) = cov(X ,Y )/var(X ).

Thus, 0 = c = a−E [Y ]+bE [X ], so that a = E [Y ]−bE [X ]. Hence,

a+bX = E [Y ]−bE [X ]+bX = E [Y ]+b(X −E [X ])

= E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Estimation Error

We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator? That is, what is the mean squared
estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2(cov(X ,Y )/var(X ))E [(Y −E [Y ])(X −E [X ])]

+(cov(X ,Y )/var(X ))2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ] = 0. The error is var(Y ).
Observing X reduces the error.

Estimation Error: A Picture
We saw that

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ])

and

E [|Y −L[Y |X ]|2] = var(Y )− cov(X ,Y )2

var(X )
.

Here is a picture when E [X ] = 0,E [Y ] = 0:

LLSE and LR
Consider the non-Bayesian case: sample (X1,Y1), . . . ,(XK ,YK ).

Then,

L[Y |X ] = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Here,

E [X ] =
1
K

K

∑
k=1

Xk

E [Y ] =
1
K

K

∑
k=1

Yk

E [X 2] =
1
K

K

∑
k=1

X 2
k

E [XY ] =
1
K

K

∑
k=1

Xk Yk

cov(X ,Y ) = E [XY ]−E [X ]E [Y ]

var(X ) = E [X 2]−E [X ]2.

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 2:

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;
var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;

LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) = X .



Linear Regression Examples

Example 3:

We find:

E [X ] = 0;E [Y ] = 0;E [X2] = 1/2;E [XY ] = −1/2;

var [X ] = E [X2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = −1/2;

LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) =−X .

Linear Regression Examples
Example 4:

We find:

E [X ] = 3;E [Y ] = 2.5;E [X 2] = (3/15)(1+22 +32 +42 +52) = 11;
E [XY ] = (1/15)(1×1+1×2+ · · ·+5×4) = 8.4;
var [X ] = 11−9 = 2;cov(X ,Y ) = 8.4−3×2.5 = 0.9;

LR: Ŷ = 2.5+
0.9
2

(X −3) = 1.15+0.45X .

LR: Another Figure

Note that
I the LR line goes through (E [X ],E [Y ])

I its slope is cov(X ,Y )
var(X) .

Summary

Confidence Interval; Linear Regression

1. 95%-Confidence Interval for µ: An±4.5σ/
√

n

2. Linear Regression: L[Y |X ] = E [Y ]+ cov(X ,Y )
var(X) (X −E [X ])

3. Non-Bayesian: minimize ∑n(Yn−a−bXn)
2

4. Bayesian: minimize E [(Y −a−bX )2]


