CS70: Lecture 20.

’Expectation; Distributions; Independence

1. Expectation (Cont'd)
2. Important Distributions
3. Independence



Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.
We want to calculate E[Y].
Method 1: We calculate the distribution of Y:

PrlY =yl =PriX € g '(y)] where g~ '(y) = {x e : g(x) = y}.
This is typically rather tedious!
Method 2: We use the following result.

Theorem:
E[g(X)] = Y. g(x)Pr[X = x].
Proof: X
ElgX¥] = YLoX(@)Prol=}, ¥, g(X(@)Prlol
X weX-1(x)
= Y Y 9xPrlel=Yax) Y Prlo]
X weX~1(x) X weX—1(x)

Y 9(x)Pr[X =x].



An Example
Let X be uniform in {—2,—-1,0,1,2,3}.

Let also g(X) = X2. Then (method 2)

3
1
ElgX¥)] = Y x5
X=-2
1 19
= {44140+ 1+449) 0=

Method 1 - We find the distribution of Y = X2:

4, w.p. §
Y — 1, w.p. §
0, w.p. e
9, wp. g5

Thus, 2 2 1 1 19



Calculating E[g(X,Y,Z)]
We have seen that E[g(X)] = Yx 9(x)Pr[X = x].
Using a similar derivation, one can show that

Elg(X.Y.Z)]= ) g(x.y,z)PriX=x,Y=y,Z=2].

X7y7z

An Example. Let X, Y be as shown below:

), w.p. 0.1
), w.p. 0.4
), w.p. 0.2
), w.p. 0.3

Elcos(2nX+nY)] = 0.1cos(0)+0.4cos(27)+ 0.2cos(x)+ 0.3 cos(37)
0.1x1404x14+02x(—1)4+0.3x(-1)=0.



Best Guess: Least Squares

If you only know the distribution of X, it seems that E[X] is a
‘good guess’ for X.

The following result makes that idea precise.

Theorem

The value of a that minimizes E[(X — a)?] is a= E[X].
Proof:

El(X-a)’] = E[(X—E[X]+E[X]-a)?]

(

= E[(X—E[X])* +2(X — E[X])(E[X] - a) + (E[X] - 8)*]
E[(X — E[X])*]+2(E[X] - a)E[X — E[X]] + (E[X] — @)®

E[(X — E[X])?] + 0+ (E[X] - a)°

EN(X — EIX])?).

AV



Best Guess: Least Absolute Deviation

Thus E[X] minimizes E[(X — a)?]. It must be noted that the
measure of the ‘quality of the approximation’ matters. The
following result illustrates that point.

Theorem
The value of a that minimizes E[| X — a|] is the median of X.

The median v of X is any real number such that

Pr[X <v]=Pr[X>v]

i’roof:
9(a) := E[|X — al] = Lyeal@— X)PrIX = x|+ Lo a(x — @)PrIX = x].

Thus, if0 < e << 1,

gla+e)=g(a)+ePr[X<al—ePr[X > a.

Hence, changing a cannot reduce g(a) only if Pr[X < a] = Pr[X > a].
U



Best Guess: lllustration
9

8t X €{1,2,3,11,13}
equal probabilities

E[lX —a]

5.
4.
3t 1
E[(X —a)?] x —
(X — )] x 5
2L—o S —— a
0 1 4 5 6 7 8 9 1011 12 13 14

E[.lX}

median mean

nNe
R—we



Best Guess: Another lllustration

X e€{1,2,11,13}
equal probabilities

E[lX —a]

median
T >

'53456|7891o1'1121§14

E[X]
mean

a



Center of Mass

The expected value has a center of mass interpretation:

0.5 05 4 07
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Monotonicity

Definition

Let X, Y be two random variables on 2. We write X < Y if
X(w) < Y(w) for all € Q, and similarly for X > Y and X > a
for some constant a.

Facts

(a) If X >0, then E[X] > 0.

(b) If X <Y, then E[X] < E[Y].

Proof

(a) If X > 0, every value a of X is nonnegative. Hence,

E[X]=) aPr[X=a] > 0.

(b) X<Y=Y—X>0= E[Y]-E[X]=E[Y—-X]>0.

Example: =

B=UnAn=15(0) < Lm1a,(®) = PrlUnAm] < Lm PrlAm].



Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2,...,6}. We say that X is uniformly distributed in
{1,2,...,6}.

More generally, we say that X is uniformly distributed in
{1,2,....,n}if PrIX=m]|=1/nform=1,2,...,n.

In that case,

n L 1 1n(n+1) n+A
E[X]_n§1mPr[X_m]_n;1me_E 5= 5



Geometric Distribution
Let’s flip a coin with Pr[H] = p until we get H.

For instance:

o = H, or
wo=TH, or
ws=TTH,or

op=TTTT--TH.
Note that Q = {w,,n=1,2,...}.
Let X be the number of flips until the first H. Then, X(w,) = n.

Also,
PriX=n]=(1-p)"'p, n>1.



Geometric Distribution

PriX=n=(1-p)" 'p,n>1.
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Geometric Distribution

PriX=n=(1-p)" 'p,n>1.
Note that

Y PiX= Y (1-p)" 'o=p Y. (1-p)" " =p ¥ (1-p)".
n=1 n=0

n=1 n=1

Now, if |a| < 1, then S:=¥5_ya" = . Indeed,

S = 1+at+d+a+--
aS = ard&+a+at+--
(1-a)s = 1+a-a+a—-a&+---=1.
Hence,
1

n;Pr[Xn]:pm:L



Geometric Distribution: Expectation

X=pG(p), i.e., PrIX=n=(1-p)" 'p,n>1.

One has
E[X] = y nPriX = n] = i n(1—p)"'p.
n=1 n=1
Thus,
EIX] = p+2(1-p)p+3(1—p)*p+4(1—p)°p+--:
(1-p)EX] = (1-p)p+2(1-p)?p+3(1-p)°p+---

PEIX] = p+ (1-p)p+ (1-p)°p+ (1-p)°p+--
by subtracting the previous two identities

= iPr[X:n]:L
n=1

Hence, 1
E[X]=—.
[X] b



Geometric Distribution: Memoryless
Let X be G(p). Then, for n> 0,

Pr[X > n] = Pr[first nflips are T] = (1 —p)".
Theorem
Pr(X >n+m|X > n]=Pr[X>m],mn>0.

Proof:

Pr(X > n+mand X > nJ
Pr(X > n]
Pr(X > n+m]
Pr(X > n]
(1—p)™m m
Ao (1-p)
= Pr[X>m].

PriX>n+mX>n] =



Geometric Distribution: Memoryless - Interpretation

Pr(X >n+m|X > n]=Pr[X>m],mn>0.

B A
TTT.... TTTTTT.... T|....... H

5 = ey
T m

Pr[X > n+m|X > n]| = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.



Geometric Distribution: Yet another look

Theorem: For ar.v. X that takes the values {0,1,2,...}, one
has
E[X] =

I

Pr[X > 1.
=1
[See later for a proof.]
If X = G(p), then Pr[X >i]=Pr[X >i—1]=(1-p)".

Hence,

EX= Y02 = X0 = i =



Expected Value of Integer RV

Theorem: For ar.v. X that takes values in {0,1,2,...}, one has

amziwwzq

Proof: One has =

E[X]

i Pr[X =]
1

oo

I

= Y {PrX > - PHX > i+1])
i=1

= Y {ix PrX > - ix PrX > i+ 1]}
i=1

= Y {ix PrIX > - (i—1) x PriX > ]}
i=1

PriX > i].
1

I

=



Poisson

Experiment: flip a coin n times. The coin is such that
Pr{H]=A/n.
Random Variable: X - number of heads. Thus, X = B(n,A/n).

Poisson Distribution is distribution of X “for large n.”
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Poisson

Experiment: flip a coin ntimes. The coin is such that
Pr{H]=A/n.

Random Variable: X - number of heads. Thus, X = B(n,A/n).
Poisson Distribution is distribution of X “for large n.”

We expect X < n. For m < none has

PriX=m] = <,’;>p’”(1 —p)" ", withp=24/n

n(n—1)---(n—m+1) (l>m<1x>nm

n
n(n—1)---(n—m+1) A™ (1 ;L>n—m

m! n

n

n—m n
~m A7 1_& ~@ A" 1_& zﬂef’l.
m! n m! n m!

For (1) we used m < n; for (2) we used (1 —a/n)" ~ e~ 2.

nm m\  n



Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter A > 0

m

X=P(A) < PriX=m] = %e"l,mz 0.

Fact: E[X] = A.
Proof:

E[X]

S M oA v AT
mx—e "=e¢e
mg1 m! mz1 (m—1)!
o0 Am+1 o Am
ety ——=e*rY) =
m=0 m m=0 m



Simeon Poisson

The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)



Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

PrlY =b|X = a] = Pr[Y = b], for all aand b.

Fact:

X, Y are independent if and only if

PriX=a,Y =b]= Pr[X =a|Pr[Y =b], forall aand b.

Obvious.



Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: PriX=a,Y =b]= 4, PriX=a]=Pr[Y =b] = {.
Example 2

Roll two die. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.

Indeed: PriX =12,Y =1]=0# Pr[X =12]Pr[Y =1] > 0.
Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y
= number of Hs in last two flips. X and Y are independent.

Indeed:

PriX=a,Y=b]= @) (i) 27°= (2) 273x (i) 272 =Pr[X=alPr[Y =b].



A useful observation about independence
Theorem

X and Y are independent if and only if
PriX €AY € Bl]=Pr[X € AlPr|Y € B] for all A,B C .

Proof:
If (<): Choose A= {a} and B= {b}.

This shows that Pr[X = a,Y = b] = Pr[X = a|Pr[Y = b].

Only if (=):
PriX e A Y € B]
=Y Y PriX=aY=b=Y ¥ PriX=alPrlY=1]
acAbeB acAbcB
=) [} PriX=alPr[y =b]| =} PriX=a][} PrlY=1]
acA beB acA beB

=) Pr[X=alPrlY € B|= Pr[X € APr[Y < B].

acA

O



Functions of Independent random Variables
Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all f(-),g(-).

Proof:
Recall the definition of inverse image:

h(z)e Cezeh'(C):={z]| h(z) € C}.
Now,
Pr(f(X) € A,g(Y) € B]
= Pr[X e f'(A),Y e g (B)], by (1)

= Pr[X e ' (A)]Pr[Y € g~'(B)], since X, Y ind.
= Pr[f(X) € AlPr[g(Y) € B], by (1).

(1)



Mean of product of independent RV

Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = YXx, 9(x,y)Pr[X = x,Y = y]. Hence,

E[XY]

Y xyPriX=x,Y =y]=Y xyPr[X = x]Pr[Y =], by ind.
X,y Xy

Z[;XyPr[X = X|Pr[Y = y]] = Y [XPr[X = X](_yPrlY = y))]
X X y

Y [XPr[X = xE[Y]] = E[X]E[Y].



Examples

(1) Assume that X, Y, Z are (pairwise) independent, with
E[X]=E[Y]=E[Z] =0and E[X?] = E[Y?] = E[Z?] = 1.

Then
E[(X+2Y+32)%| = E[X?+4Y2+9Z% + 4XY +12YZ +6XZ]

=14+44+94+4x0+12x0+6x0
=14.

(2) Let X, Y be independent and U[1,2,...n]. Then

E[(X-Y)?) = E[X2+Y2-2XY]=2E[X?]-2E[X]?
1+3n+2n* (n+1)?
3 2




Mutually Independent Random Variables

Definition
X,Y,Z are mutually independent if

PriX=x,Y=y,Z=2]=Pr[X=Xx]|Pr[Y =y|Pr[Z=2], for all x,y,z.

Theorem
The events A, B, C, ... are pairwise (resp. mutually)
independent iff the random variables 14,15,1¢,... are pairwise
(resp. mutually) independent.
Proof:

Pr[1A:1,1B: 1,1021]:Pf[AﬂBﬂC],...



Functions of pairwise independent RVs

If X,Y,Z are pairwise independent, but not mutually
independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X =1{coin1is H},Y=1{coin2is H},Z=Xa& Y. Then,
X,Y,Z are pairwise independent. Let g(Y,Z) = Y@ Z. Then
g(Y,Z)= X is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually
independent in a way that A and BN C are not independent. Let
X=14Y=15,Z=1¢. Choose f(X)=X,g(Y,Z)=YZ.



Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random
variables are mutually independent.

Example:

Let {Xn,n > 1} be mutually independent. Then,

Yi:=X4 X2(X3 +X4)2, Yo := max{X5,X6} — min{X7,X8}, Y3:=Xg COS(X10 + Xi1 )
are mutually independent.

Proof:

Let By := {(X1 7X27X37X4) ‘ X1 X2(X3 -i-X4)2 e A } Similarly for By, Bs.
Then

PI’[Y1 €A1,Y2€A2,Y3 €A3]
:Pr[(X1a"'7X4)€B17(X57“'5X8)EBQ;(ng"'7X11)€BS]

= Pr((Xi,...,Xa) € By]Pr[(Xs, ..., Xg) € Ba2] Pr[(Xg,..., X11) € B3]
= Pr[Y; € A{]Pr[Yz € A2]Pr[Y3 € A



Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then
AAB, C\ D, E are mutually independent.

Proof:

1AAB = f(1A»1B) where
f(0,0)=0,f(1,0)=1,f(0,1)=1,f(1,1)=0

1C\D = g(1c,1D) where
9(0,0)=0,9(1,0)=1,9(0,1)=0,g9(1,1) =0

1z = h(1g) where
h(0)=1and h(1) =0.

Hence, 14a8,1¢\p, 1 are functions of mutually independent RVs.
Thus, those RVs are mutually independent. Consequently, the events
of which they are indicators are mutually independent. O



Product of mutually independent RVs

Theorem
Let Xi,..., X, be mutually independent RVs. Then,

E[Xi Xo- - Xo] = EDXG]E[X] - E[Xa).

Proof:
Assume that the result is true for n. (It is true for n=2.)
Then, with Y = Xj --- X,, one has

E[X1 - XoXni1] = E[YXpi4],
= E[YIE[Xns1],
because Y, X, 1 are independent
= E[Xi]-- E[Xn] E[Xps1]-



Summary.

‘ Expectation; Distributions; Independence

Expectation:

> E[X]:=Y,aPr[X=al.

» Expectation is Linear.
Distributions:

> G(p): E[X]=1/p;

» B(n,p): E[X]=np;

> P(A): E[X]=2
Independence:

> X, Y independent

< PriX e AY € B = Pr[X € A|Pr[Y € B]
» Then, f(X),g(Y) are independent
and E[XY] = E[X]E[Y]
» Mutual independence ....



