
CS70: Lecture 20.

Expectation; Distributions; Independence

1. Expectation (Cont’d)
2. Important Distributions
3. Independence



Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(y) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

x
g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].



An Example
Let X be uniform in {−2,−1,0,1,2,3}.
Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4 + 1 + 0 + 1 + 4 + 9}1
6

=
19
6
.

Method 1 - We find the distribution of Y = X 2:

Y =





4, w.p. 2
6

1, w.p. 2
6

0, w.p. 1
6

9, w.p. 1
6 .

Thus,

E [Y ] = 4
2
6

+ 1
2
6

+ 0
1
6

+ 9
1
6

=
19
6
.



Calculating E [g(X ,Y ,Z )]

We have seen that E [g(X )] = ∑x g(x)Pr [X = x ].

Using a similar derivation, one can show that

E [g(X ,Y ,Z )] = ∑
x ,y ,z

g(x ,y ,z)Pr [X = x ,Y = y ,Z = z].

An Example. Let X ,Y be as shown below:

0.1

0 1

0.2 0.3

0.4
0

1

X

Y

(X, Y ) =

8
>><
>>:

(0, 0), w.p. 0.1
(1, 0), w.p. 0.4
(0, 1), w.p. 0.2
(1, 1), w.p. 0.3

E [cos(2πX + πY )] = 0.1cos(0) + 0.4cos(2π) + 0.2cos(π) + 0.3cos(3π)

= 0.1×1 + 0.4×1 + 0.2× (−1) + 0.3× (−1) = 0.



Best Guess: Least Squares

If you only know the distribution of X , it seems that E [X ] is a
‘good guess’ for X .

The following result makes that idea precise.

Theorem
The value of a that minimizes E [(X −a)2] is a = E [X ].

Proof:

E [(X −a)2] = E [(X −E [X ] + E [X ]−a)2]

= E [(X −E [X ])2 + 2(X −E [X ])(E [X ]−a) + (E [X ]−a)2]

= E [(X −E [X ])2] + 2(E [X ]−a)E [X −E [X ]] + (E [X ]−a)2

= E [(X −E [X ])2] + 0 + (E [X ]−a)2

≥ E [(X −E [X ])2].



Best Guess: Least Absolute Deviation
Thus E [X ] minimizes E [(X −a)2]. It must be noted that the
measure of the ‘quality of the approximation’ matters. The
following result illustrates that point.

Theorem
The value of a that minimizes E [|X −a|] is the median of X .

The median ν of X is any real number such that

Pr [X ≤ ν] = Pr [X ≥ ν]

.
Proof:
g(a) := E [|X −a|] = ∑x≤a(a−x)Pr [X = x ] + ∑x≥a(x−a)Pr [X = x ].

Thus, if 0 < ε << 1,

g(a + ε) = g(a) + εPr [X ≤ a]− εPr [X ≥ a].

Hence, changing a cannot reduce g(a) only if Pr [X ≤ a] = Pr [X ≥ a].



Best Guess: Illustration

a

E[|X � a|]

E[(X � a)2] ⇥ 1

10

⌫ E[X]
median mean

X 2 {1, 2, 3, 11, 13}
equal probabilities



Best Guess: Another Illustration

E[|X � a|]

E[(X � a)2] ⇥ 1

10

E[X]

median

mean

equal probabilities

a

X 2 {1, 2, 11, 13}



Center of Mass

The expected value has a center of mass interpretation:

a1 a2 a3

p3p2p1

0.5 0.5

0 1

0.70.3

0.7
0 1

0.5

p3(a3 � µ)
µ

p2(a2 � µ)
p1(a1 � µ)

X

n

pn(an � µ) = 0

, µ =
X

n

anpn = E[X]



Monotonicity
Definition
Let X ,Y be two random variables on Ω. We write X ≤ Y if
X (ω)≤ Y (ω) for all ω ∈ Ω, and similarly for X ≥ Y and X ≥ a
for some constant a.
Facts
(a) If X ≥ 0, then E [X ]≥ 0.
(b) If X ≤ Y , then E [X ]≤ E [Y ].
Proof
(a) If X ≥ 0, every value a of X is nonnegative. Hence,

E [X ] = ∑
a

aPr [X = a]≥ 0.

(b) X ≤ Y ⇒ Y −X ≥ 0⇒ E [Y ]−E [X ] = E [Y −X ]≥ 0.

Example:

B =∪mAm⇒ 1B(ω)≤∑m 1Am (ω)⇒Pr [∪mAm]≤∑m Pr [Am].



Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2, . . . ,6}. We say that X is uniformly distributed in
{1,2, . . . ,6}.
More generally, we say that X is uniformly distributed in
{1,2, . . . ,n} if Pr [X = m] = 1/n for m = 1,2, . . . ,n.
In that case,

E [X ] =
n

∑
m=1

mPr [X = m] =
n

∑
m=1

m× 1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.



Geometric Distribution
Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}.
Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.



Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.



Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Note that
∞

∑
n=1

Pr [Xn] =
∞

∑
n=1

(1−p)n−1p = p
∞

∑
n=1

(1−p)n−1 = p
∞

∑
n=0

(1−p)n.

Now, if |a|< 1, then S := ∑
∞

n=0 an = 1
1−a . Indeed,

S = 1 + a + a2 + a3 + · · ·
aS = a + a2 + a3 + a4 + · · ·

(1−a)S = 1 + a−a + a2−a2 + · · ·= 1.

Hence,
∞

∑
n=1

Pr [Xn] = p
1

1− (1−p)
= 1.



Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

=
∞

∑
n=1

Pr [X = n] = 1.

Hence,

E [X ] =
1
p
.



Geometric Distribution: Memoryless
Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].



Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A] = Pr [X > m].

The coin is memoryless, therefore, so is X .



Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one
has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

[See later for a proof.]

If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
∞

∑
i=1

(1−p)i−1 =
∞

∑
i=0

(1−p)i =
1

1− (1−p)
=

1
p
.



Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has

E [X ] =
∞

∑
i=1

i×Pr [X = i]

=
∞

∑
i=1

i{Pr [X ≥ i]−Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− i×Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− (i−1)×Pr [X ≥ i]}

=
∞

∑
i=1

Pr [X ≥ i].



Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”



Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ

n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m + 1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈(2) λ m

m!

(
1− λ

n

)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.



Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ

λ

∞

∑
m=0

λ m

m!

= e−λ
λeλ = λ .



Simeon Poisson

The Poisson distribution is named after:



Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr [Y = b|X = a] = Pr [Y = b], for all a and b.

Fact:

X ,Y are independent if and only if

Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b], for all a and b.

Obvious.



Independence: Examples

Example 1
Roll two die. X ,Y = number of pips on the two dice. X ,Y are
independent.

Indeed: Pr [X = a,Y = b] = 1
36 ,Pr [X = a] = Pr [Y = b] = 1

6 .

Example 2
Roll two die. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.

Indeed: Pr [X = 12,Y = 1] = 0 6= Pr [X = 12]Pr [Y = 1] > 0.

Example 3
Flip a fair coin five times, X = number of Hs in first three flips, Y
= number of Hs in last two flips. X and Y are independent.

Indeed:

Pr [X = a,Y = b] =

(
3
a

)(
2
b

)
2−5 =

(
3
a

)
2−3×

(
2
b

)
2−2 = Pr [X = a]Pr [Y = b].



A useful observation about independence
Theorem

X and Y are independent if and only if

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B] for all A,B ⊂ℜ.

Proof:
If (⇐): Choose A = {a} and B = {b}.
This shows that Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b].

Only if (⇒):

Pr [X ∈ A,Y ∈ B]

= ∑
a∈A

∑
b∈B

Pr [X = a,Y = b] = ∑
a∈A

∑
b∈B

Pr [X = a]Pr [Y = b]

= ∑
a∈A

[ ∑
b∈B

Pr [X = a]Pr [Y = b]] = ∑
a∈A

Pr [X = a][ ∑
b∈B

Pr [Y = b]]

= ∑
a∈A

Pr [X = a]Pr [Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B].



Functions of Independent random Variables
Theorem Functions of independent RVs are independent
Let X ,Y be independent RV. Then

f (X ) and g(Y ) are independent, for all f (·),g(·).

Proof:
Recall the definition of inverse image:

h(z) ∈ C⇔ z ∈ h−1(C) := {z | h(z) ∈ C}. (1)

Now,

Pr [f (X ) ∈ A,g(Y ) ∈ B]

= Pr [X ∈ f−1(A),Y ∈ g−1(B)], by (1)

= Pr [X ∈ f−1(A)]Pr [Y ∈ g−1(B)], since X ,Y ind.
= Pr [f (X ) ∈ A]Pr [g(Y ) ∈ B], by (1).



Mean of product of independent RV

Theorem
Let X ,Y be independent RVs. Then

E [XY ] = E [X ]E [Y ].

Proof:
Recall that E [g(X ,Y )] = ∑x ,y g(x ,y)Pr [X = x ,Y = y ]. Hence,

E [XY ] = ∑
x ,y

xyPr [X = x ,Y = y ] = ∑
x ,y

xyPr [X = x ]Pr [Y = y ], by ind.

= ∑
x

[∑
y

xyPr [X = x ]Pr [Y = y ]] = ∑
x

[xPr [X = x ](∑
y

yPr [Y = y ])]

= ∑
x

[xPr [X = x ]E [Y ]] = E [X ]E [Y ].



Examples

(1) Assume that X ,Y ,Z are (pairwise) independent, with
E [X ] = E [Y ] = E [Z ] = 0 and E [X 2] = E [Y 2] = E [Z 2] = 1.

Then

E [(X + 2Y + 3Z )2] = E [X 2 + 4Y 2 + 9Z 2 + 4XY + 12YZ + 6XZ ]

= 1 + 4 + 9 + 4×0 + 12×0 + 6×0
= 14.

(2) Let X ,Y be independent and U[1,2, . . .n]. Then

E [(X −Y )2] = E [X 2 + Y 2−2XY ] = 2E [X 2]−2E [X ]2

=
1 + 3n + 2n2

3
− (n + 1)2

2
.



Mutually Independent Random Variables

Definition

X ,Y ,Z are mutually independent if

Pr [X = x ,Y = y ,Z = z] = Pr [X = x ]Pr [Y = y ]Pr [Z = z], for all x ,y ,z.

Theorem
The events A,B,C, . . . are pairwise (resp. mutually)
independent iff the random variables 1A,1B,1C , . . . are pairwise
(resp. mutually) independent.
Proof:

Pr [1A = 1,1B = 1,1C = 1] = Pr [A∩B∩C], . . .



Functions of pairwise independent RVs

If X ,Y ,Z are pairwise independent, but not mutually
independent, it may be that

f (X ) and g(Y ,Z ) are not independent.

Example 1: Flip two fair coins,
X = 1{coin 1 is H},Y = 1{coin 2 is H},Z = X ⊕Y . Then,
X ,Y ,Z are pairwise independent. Let g(Y ,Z ) = Y ⊕Z . Then
g(Y ,Z ) = X is not independent of X .

Example 2: Let A,B,C be pairwise but not mutually
independent in a way that A and B∩C are not independent. Let
X = 1A,Y = 1B,Z = 1C . Choose f (X ) = X ,g(Y ,Z ) = YZ .



Functions of mutually independent RVs
One has the following result:
Theorem
Functions of disjoint collections of mutually independent random
variables are mutually independent.
Example:
Let {Xn,n ≥ 1} be mutually independent. Then,

Y1 :=X1X2(X3+X4)
2,Y2 :=max{X5,X6}−min{X7,X8},Y3 :=X9 cos(X10+X11)

are mutually independent.
Proof:
Let B1 := {(x1,x2,x3,x4) | x1x2(x3 + x4)2 ∈ A1}. Similarly for B2,B3.
Then

Pr [Y1 ∈ A1,Y2 ∈ A2,Y3 ∈ A3]

= Pr [(X1, . . . ,X4) ∈ B1,(X5, . . . ,X8) ∈ B2,(X9, . . . ,X11) ∈ B3]

= Pr [(X1, . . . ,X4) ∈ B1]Pr [(X5, . . . ,X8) ∈ B2]Pr [(X9, . . . ,X11) ∈ B3]

= Pr [Y1 ∈ A1]Pr [Y2 ∈ A2]Pr [Y3 ∈ A3]



Operations on Mutually Independent Events
Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A,B,C,D,E are mutually independent, then
A∆B,C \D, Ē are mutually independent.

Proof:

1A∆B = f (1A,1B) where
f (0,0) = 0, f (1,0) = 1, f (0,1) = 1, f (1,1) = 0

1C\D = g(1C ,1D) where
g(0,0) = 0,g(1,0) = 1,g(0,1) = 0,g(1,1) = 0

1Ē = h(1E ) where
h(0) = 1 and h(1) = 0.

Hence, 1A∆B,1C\D,1Ē are functions of mutually independent RVs.
Thus, those RVs are mutually independent. Consequently, the events
of which they are indicators are mutually independent.



Product of mutually independent RVs

Theorem
Let X1, . . . ,Xn be mutually independent RVs. Then,

E [X1X2 · · ·Xn] = E [X1]E [X2] · · ·E [Xn].

Proof:

Assume that the result is true for n. (It is true for n = 2.)

Then, with Y = X1 · · ·Xn, one has

E [X1 · · ·XnXn+1] = E [YXn+1],

= E [Y ]E [Xn+1],

because Y ,Xn+1 are independent
= E [X1] · · ·E [Xn]E [Xn+1].



Summary.

Expectation; Distributions; Independence

Expectation:
I E [X ] := ∑a aPr [X = a].
I Expectation is Linear.

Distributions:
I G(p) : E [X ] = 1/p;
I B(n,p) : E [X ] = np;
I P(λ ) : E [X ] = λ

Independence:
I X ,Y independent
⇔ Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B]

I Then, f (X ),g(Y ) are independent
and E [XY ] = E [X ]E [Y ]

I Mutual independence ....


