CS70: Lecture 20.

‘ Expectation; Distributions; Independence

1. Expectation (Cont'd)
2. Important Distributions
3. Independence

Calculating E[g(X)]
Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].
Method 1: We calculate the distribution of Y:
'(y)] where g7 (y) =

This is typically rather tedious!

PrlY =y|=Pr[Xeg™ {xeR:g(x)=y}.

Method 2: We use the following result.

Theorem:
E[g(X)] = Y, 9(x)Pr[X = x].
Proof: X
ElgX)] = YaX(o)Prlo]=). Y g(X())Prla]
o X weX~1(x)
=Y Y 9xPrlel=Yox) Y Prle]
X weX~1(x) X weX~1(x)

= Y gx)PriX=x]

An Example
Let X be uniform in {—-2,-1,0,1,2,3}.

Let also g(X) = X2. Then (method 2)

Elg(X)] =

;
= {4+140+1 4440} = 2

Method 1 - We find the distribution of Y = X2:
4, w.p.
1, wp.
0, w.p.
9, wp.

Y =

Ol =0 =3O

Thus, 2 2 1 1 19
E[Y] =45 +15+05+95= &

Calculating E[g(X.Y,2)]
We have seen that E[g(X)] = Xx g(x)Pr[X = x].
Using a similar derivation, one can show that

Elg(X.Y,2)]= Y g(x,y,2)PriX=x,Y=y,Z=2].

xX.y.z

An Example. Let X, Y be as shown below:

. wp. 0.1
. wp. 04
. wp. 02
. wp. 03

Elcos(2nX+nY)] =
= 01x1+04x1+02x(—

0.1cos(0) + 0.4 cos(2m) 4 0.2cos(m) + 0.3 cos(37)
1)+03x (~1)=0.

Best Guess: Least Squares

If you only know the distribution of X, it seems that E[X] is a
‘good guess’ for X.

The following result makes that idea precise.

Theorem

The value of a that minimizes E[(X — a)?] is a = E[X].
Proof:

El(X-a? = E[(X—E[X]+E[X]-a)?

I
EI(X — E[X])?* +2(X — E[X])(E[X] - &) +
= E[(X—EX)?+2(E[X] -
E[(X EX])?]+0+ (E[X] - a)®
I( a8

Vol
m
><
E
>
=

(EX]-
a)E[X - E[X]]+ (E[X] -

a)’]
a)?

Best Guess: Least Absolute Deviation

Thus E[X] minimizes E[(X — a)?]. It must be noted that the
measure of the ‘quality of the approximation’ matters. The
following result illustrates that point.

Theorem
The value of a that minimizes E[|X — a|] is the median of X.

The median v of X is any real number such that

PriX <v]=Pr[X>V]

i’roof:
g(a) = E[|X —al]] = Xx<a(@a— x) Pr[X = X] + Xxa(x — @) Pr{X = x].

Thus, if0<e<<1,
gla+e)=g9(a)+ePr(X<a—ePr[X>al.
Hence, changing a cannot reduce g(a) only if Pr[X < a] =

PriX > a.
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Best Guess: Another lllustration
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Center of Mass

The expected value has a center of mass interpretation:
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Monotonicity

Definition

Let X, Y be two random variables on . We write X < Y if
X(w) < Y(w) for all € Q, and similarly for X > Y and X > a
for some constant a.

Facts

(a) If X >0, then E[X] > 0.

(b) If X <Y, then E[X] < E[Y].

Proof

(a) If X > 0, every value a of X is nonnegative. Hence,

E[X]=Y aPr[X = a] > 0.

by X<Y=Y-X>0=E[Y]-E[X]=E[Y-X]>0.
Example:

B=UmnAm = 15(0) <Xm1a,(®) = PrlUnAm] < XmPriAm].

O

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2,...,6}. We say that X is uniformly distributed in
{1,2,...,6}.

More generally, we say that X is uniformly distributed in
{1,2,...,n}if PriX=m]=1/nform=1,2,...,n.

In that case,

1 71n(n+1)7n+1

n n
E[X]:n;mPr[X:m]:n;mngn 5 5

Geometric Distribution
Let’s flip a coin with Pr[H] = p until we get H.

4‘=?

For instance:

@ =H, or
awp=TH, or
a3=TTH,or

op=TTTT--TH.
Note that Q = {wp,n=1,2,...}.
Let X be the number of flips until the first H. Then, X(w,) = n.

Also,
PriX=rn]=(1-p)"'p, n>1.




Geometric Distribution
PriX=n=(1-p)" 'p,n>1.
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Geometric Distribution

PriX=n=(1-p)"'p,n>1.
Note that

oo

iPr[xn] Y (1-p)p=p im P =p iou )",

n=1
Now, if |a| < 1, then S:=¥7 ,a" = 1. Indeed,
S = 1ta+a+a+--

aS atra@+a+at+--
(1-a)8 = 1+a—a+a—a&+---=1.

Hence,

- 1
,;Pr[xn]:p71_(1_p):1.

Geometric Distribution: Expectation

X =p G(p), i-e., PriX=n]=(1-p)" 'p,n>1.

One has
E[X]= i nPr(X =n] = i n(1—p)"'p.
n=1 n=1
Thus,
EIX] = p+2(1-p)p+3(1-p)°p+4(1—p)°p+--
(1-pEX] = (1—p)p+2(1 —p)2p+3(1 —p)2p+--

PEIX] = p+ (1-pp+ (1-pPp+ (1-p)°p+--
by subtracting the previous two identities
Y PriXx=nj=1.

n=1

Hence, :
E[X]=—.
[X] 3

Geometric Distribution: Memoryless
Let X be G(p). Then, for n> 0,
Pr[X > n] = Pr[ first nflips are T] = (1 —p)".
Theorem
Pr[X >n+m|X > n]=Pr[X >m],m,n>0.
Proof:
Pr[X >n+mand X > n]
Pr[X > n]
PriX > n+m]
PriX > n]
1 — p)yrm
= =Py,

(1-p)"
= Pr[X>m].

PriX>n+mX>n =

Geometric Distribution: Memoryless - Interpretation

Pr{X > n+m|X > n]=Pr[X >m],mn>0.

B A
TTT...TTTTTT.... T H

L5 2 >
n m

Pr{X > n+m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m|.

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For ar.v. X that takes the values {0,1,2,...}, one
has .
E[X] = Z PriX >i].
i=1
[See later for a proof.]
If X = G(p), then Pr[X > =Pr[X>i—1]=(1-p)".
Hence,

oo

EX=X(-p = L0 = 7 =

i=1




Expected Value of Integer RV

Theorem: For ar.v. X that takes values in {0,1,2,...}, one has

EX]= Y PriX>1].
i=1

Proof: One has

ix PriX =]

gk

E[X] =

HPIX > i - PriX > i+1]}

1
[agl3

{ix PrIX > i]— i PriX > i+1]}

Il
gk

{ix PrIX > i]— (i—1)x PriX > ]}

Il
[agk

Il
gkl

Prix > 1.

O

Poisson

Experiment: flip a coin ntimes. The coin is such that
Pr[H)=A/n.

Random Variable: X - number of heads. Thus, X = B(n,A/n).

Poisson Distribution is distribution of X “for large n.”
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Poisson

Experiment: flip a coin ntimes. The coin is such that
Pr[H]=A/n.

Random Variable: X - number of heads. Thus, X = B(n,A/n).
Poisson Distribution is distribution of X “for large n.”

We expect X <« n. For m < none has

PriX=m] = (;>pm(1—p)”’”’, withp=21/n
_on(n=1)--(n=m+1) (A\" s n=m
N m n n
_n(n=1)---(n—m+1) A" ;A n=m
- nm ‘mt n
~ E(p&)”}(&ﬂ@,&)nzﬂe—y
m! n m! n m!

For (1) we used m < n; for (2) we used (1 —a/n)"~ e~4.

Poisson Distribution: Definition and Mean
Definition Poisson Distribution with parameter A > 0

m
X=P(A)& PriX=m] = %e”l,mzo.

Fact: E[X]=A.
Proof:
oo m 0 m
ElX] = Y mx Moi_gry M
= m! &= (m—1)!
o m+1 o0 m
= e* A—I ey l—l
m=0 m m=0 m:
= e*ret=1.

]

Simeon Poisson

The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)

Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y =b|X = a] = Pr[Y = b], for all aand b.

Fact:
X,Y are independent if and only if

PriX=a,Y = b] = Pr[X = a]Pr[Y = b], for all aand b.

Obvious.




Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X,Y are
independent.

Indeed: PriX =a,Y =b|= 5, PriX=a] = Pr[Y =b] = {.
Example 2

Roll two die. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.

A useful observation about independence
Theorem

X and Y are independent if and only if
PriX e A Y € Bl = Pr[X € A]Pr[Y € B] for all A,BC .

Proof:
If («): Choose A= {a} and B = {b}.

This shows that Pr(X =a,Y = b] = Pr[X = a]Pr[Y = b].

Functions of Independent random Variables
Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all f(-),g(-).

Proof:
Recall the definition of inverse image:

. —1 —

Indeed: Pr[X=12,Y =1]=0+# Pr{X =12]Pr[Y =1] > 0. Only if (=): h(z)e C&zeh™'(C):={z| h(z) € C}. (1)
Example 3 PriX €AY e B Now,
Flip a fair coin five times, X = number of Hs in first three flips, Y =Y Y PriX=aY=b=Y Y PrX=aPrlY=1] Pr{f(X) € A,g(Y) € B]
= number of Hs in last two flips. X and Y are independent. acAbeB rix — alPrly baEAbEB prix - — PriX e }"(A) Y g '(B)], by (1)
Indeed: N aez;q[bgB o= ey =bll = anA = a][bgB Y ="l — PriX e f(A)PIY € g~ (B)], since X, Y ind.
PriX—aY—b]— (2) (Z)z*5 - (2)24 « (i)z*z — Pr{X = aPr{Y b]. = ag,AF’f[X =a|Pr[Y € B = PriX € A|PrlY € B]. — Prf(X) € AlPr[g(Y) € B], by (1).

0 0

Mean of product of independent RV Examples Mutually Independent Random Variables

Theorem
Let X, Y be independent RVs. Then

E[XY]= E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = Xx, 9(x,y)Pr[X = x,Y = y]. Hence,
E[XY] = Y xyPriX=x,Y=y]=Y xyPr{X =x]|Pr[Y =y], by ind.
X,y Xy
= Y wPriX =xIPrlY =yl = Y [xPriX = x](LyPr[Y = y])]
X y X y

)X:[xPr[x = X|E[Y]] = E[XIE[Y].

(1) Assume that X, Y, Z are (pairwise) independent, with
E[X] = E[Y] = E[Z] =0 and E[X?] = E[Y?] = E[Z?] =1.

Then

E[(X+2Y +32) = E[X?+4Y2+9Z°% + 4XY +12YZ + 6XZ]
=14+44+94+4%x04+12x0+6x0
=14
(2) Let X, Y be independent and U[1,2,...n]. Then
E[(X—Y) E[X?+ Y2 —2XY] = 2E[X?] - 2E[X]?
1+3n+2m  (n+1)?
3 2

Definition
X, Y,Z are mutually independent if

PriX=x,Y=y,Z=2z]=Pr[X=x]Pr[Y=y]|PrlZ=2], forall x,y,z.

Theorem
The events A, B, C,... are pairwise (resp. mutually)
independent iff the random variables 14,15,1¢,... are pairwise
(resp. mutually) independent.
Proof:

PI’[1A:1,1B:1,1C:1]:Pf[AﬁBﬁC],...




Functions of pairwise independent RVs

If X,Y,Z are pairwise independent, but not mutually
independent, it may be that

f(X) and g(Y,Z) are not independent.

Example 1: Flip two fair coins,

X =1{coin1is H},Y =1{coin2is H},Z=X& Y. Then,
X,Y,Z are pairwise independent. Let g(Y,Z) = Y& Z. Then
g(Y.Z) = X is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually

independent in a way that A and BN C are not independent. Let

X=14,Y =152 =1¢. Choose f(X) = X,g(Y,Z) = YZ.

Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random
variables are mutually independent.

Example:

Let {X»,n > 1} be mutually independent. Then,

Yy = Xy Xo(Xg + X4)2, Yo := max{Xs, Xg } —min{ X7, Xg} Y3 := Xg cos(X10+ X11)
are mutually independent.

Proof:

Let By := {(X1 7X2‘X3.,X4) ‘ Xq X2(X3 +X4)2 € Ay } Similarly for By, Bs.
Then

Pf[Y1 6A1,Y2€A2,Y3€A3]
= Pr[(Xi,...,Xs) € B1,(Xs,..., Xg) € Bz, (Xa...., X11) € By]

= PI'[(X1,,...X4) € B1]Pf[(X5 ..... Xg) € Bz]Pf[(Xg .4,.,X11) € Bg]

= Pf[Y1 S A1]Pf[Y2 €A2]Pf[Y3 €A3]

Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then
AAB, C\ D, E are mutually independent.

Proof:
1an8 = f(14,15) where
f(0,0)=0,f(1,0) =1,f(0,1) =1,f(1,1)=0

1cwo=9(1¢.1p) where
9(0,0)=0,9(1,0)=1,9(0,1) =0,9(1.1)=0
1z = h(1g) where
h(0) =1 and h(1) =0.

Hence, 1448, 1¢\p, 1£ are functions of mutually independent RVs.
Thus, those RVs are mutually independent. Consequently, the events
of which they are indicators are mutually independent. O

Product of mutually independent RVs

Theorem
Let Xi,..., X, be mutually independent RVs. Then,

EXi X+ Xa] = E[XIE[Xa] - E[Xy].
Proof:

Assume that the result is true for n. (It is true for n=2.)
Then, with Y = Xj --- X, one has

E[Xy -+ XnXni1] E[YXn 1]
EY]E[Xp1],
because Y, X,.1 are independent

= E[X1]-~-E[Xn]E[Xn+1]‘

]

Summary.

‘ Expectation; Distributions; Independence

Expectation:

> E[X]:=Y,aPr[X=a.

» Expectation is Linear.
Distributions:

> G(p): E[X]=1/p;

» B(n,p): E[X] = np;

> P(A): E[X]=A
Independence:

» X, Y independent

< PriX e A Y € B]=Pr[X € A|Pr[Y € B]
» Then, f(X),g(Y) are independent
and E[XY] = E[X]E[Y]
» Mutual independence ...




