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Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?

Drink Alcohol — “> 18"

“< 18" = Don’t Drink Alcohol. Contrapositive.

Propositional Forms.
AV, P = Q=-PVAQ.

Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, P(x), and quantifiers. Vx, P(x).
DeMorgan’s: —(PvQ)=-PA—-Q. -V¥x,P(x)=3x,-P(x).



CS70: Lecture 2. QOutline.

Today: Proofs!!!

1.

0D

5.

By Example.

Direct. (Prove P = Q.)

by Contraposition (Prove P = Q)
by Contradiction (Prove P.)

by Cases

If time: discuss induction.
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Quick Background and Notation.

Integers closed under addition.
abeZ — at+be”Z

alb means “a divides b”.

2|4? Yes! Since for g =2, 4 = (2)2.

71237 No! No g where true.

422 No!
Poll

Formally: a|lb <= 3g € Z where b= aq.
3|15 since for g =5, 15 = 3(5).
A natural number p > 1, is prime if it is divisible only by 1 and itself.
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Theorem: For any a,b,c € Z, if a|b and a|c then a|(b— c).

Proof: Assume a|b and a|c
b=agand c=aq where q.q € Z

b—c=aq—aq =a(q—q’) Done?
(b—c)=a(g—¢q') and (g— ¢') is an integer so by definition of divides
al(b—c) O

Works for Va, b, c?
Argument applies to every a,b,c € Z.
Used distributive property and definition of divides.

Direct Proof Form:
Goal: P = Q
Assume P.

;I"Herefore Q.
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Another Direct Proof.

Theorem: Vne D;,(11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where¢{=(k—9a-b)eZ

That is 11]alternating sum of digits.
Note: similar proof to other. In this case every —> is «—

Often works with arithmetic properties ...
...not when multiplying by 0.

We have.
Theorem: Vn e N',(11]alt. sum of digits of n) <= (11|n)
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Theorem: /2 is irrational.
Must show: For every a,b € Z, (2)? # 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—= P;--- = R
-P= Q- = -R
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Product of first k primes..

Did we prove?
» “The product of the first k primes plus 1 is prime.”
> No.

» The chain of reasoning started with a false statement.

Consider example..
> 2x3x5x7x11x13+1=30031=59 x 509
» There is a prime in between 13 and g = 30031 that divides q.

» Proof assumed no primes in between py and q.
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Case 2: aeven, b odd: even - even +odd = even. Not possible.
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The fourth case is the only one possible, so the lemma follows.
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Theorem: There exist irrational x and y such that x¥ is rational.
Letx =y =+2.

V2 . .
Case 1: x¥ =+/2" " is rational. Done!

Case 2: \/é\/é is irrational.

» New values: x = \@\/E, y=+2.
>

X = (ff) VRt s

Thus, we have irrational x and y with a rational x¥ (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds? Don’t know!!!
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Theorem: 3 =4
Proof: Assume 3 =4.
Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4=3.

By commutativity theorem holds.
Don’t assume what you want to prove!
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X=(x+y)
X =2X
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Poll!

Dividing by zero is no good. Multiplying by zero is wierdly cool!
Also: Multiplying inequalities by a negative.

P — Qdoes not mean Q = P.
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Five year old Gauss Theorem: V(ne N): Y7 ,i= (M),
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» Prove P(k-+1). “Induction Step.”
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Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;
» P(0) = “First domino falls”

> (Vk) P(k) = P(k+1):
“kth domino falls implies that k + 1st domino falls”
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I;(n+3)

P(n+2) P(0)
P(n+1) vk, P(k) = P(k+1)
©. 7 P(n) P(0) = P(1) = P(2) = P(3) ...

(Vne N)P(n)

P(3)
P(2)
P(1)
P(0)

Your favorite example of forever..or the natural numbers...
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