Review.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " \ge 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

Propositional Forms.

$$\land,\lor,\lnot,P\Longrightarrow Q\equiv\lnot P\lor Q.$$

Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers. $\forall x, P(x)$.

DeMorgan's: $\neg (P \lor Q) \equiv \neg P \land \neg Q$. $\neg \forall x, P(x) \equiv \exists x, \neg P(x)$.

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Quick Background and Notation.

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Direct Proof.

```
Theorem: For any a, b, c \in Z, if a \mid b and a \mid c then a \mid (b - c).
Proof: Assume a b and a c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
  Therefore Q.
```

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of }n) \implies 11|n| Is converse a theorem? \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of }n) Yes? No?
```

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in \mathbb{N}', (11|\text{alt. sum of digits of } n) \iff (11|n)$

Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$
 and $n = k'd$. what do we know about d ?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Another Contraposition...

```
Lemma: For every n in N, n^2 is even \implies n is even. (P \implies Q)
n^2 is even. n^2 = 2k \dots \sqrt{2k} even?
Proof by contraposition: (P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)
Q = 'n is even' ..... \neg Q = 'n is odd'
Prove \neg Q \Longrightarrow \neg P: n is odd \Longrightarrow n^2 is odd.
n = 2k + 1
n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.
n^2 = 2l + 1 where l is a natural number..
... and n<sup>2</sup> is odd!
\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...
```

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \implies R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem *P* is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \leq q-x=1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first *k* primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Consider example..

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime in between 13 and q = 30031 that divides q.
- ▶ Proof assumed no primes *in between* p_k and q.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll!

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

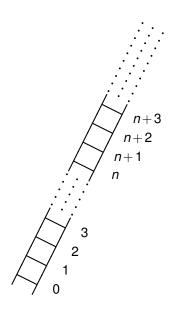
Don't assume the theorem. Divide by zero. Watch converse. ...

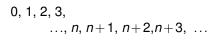
CS70: Note 3. Induction!

Poll.

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. ..and Induction.
- 4. Simple Proof.

The natural numbers.





A formula.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

- ► Prove *P*(0).
- Assume P(k), "Induction Hypothesis"
- ▶ Prove P(k+1). "Induction Step."

Gauss induction proof.

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \ge 0, P(k) \Longrightarrow P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k + 2(k+1)}{2}$$

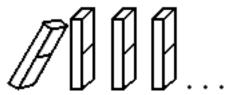
$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)! By principle of induction...

Notes visualization

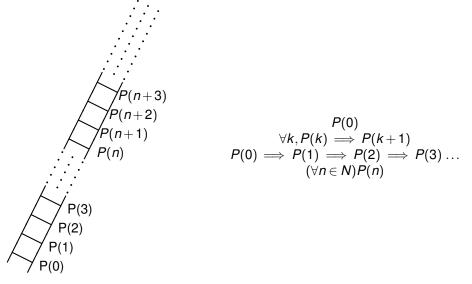
Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

- \triangleright P(0) = "First domino falls"
- $(\forall k) P(k) \Longrightarrow P(k+1):$ "kth domino falls implies that k+1st domino falls"

Climb an infinite ladder?



Your favorite example of forever..or the natural numbers...

Gauss and Induction

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate
$$P(n)$$
 for $n = k$. $P(k)$ is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.
$$P(0)$$
 is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for
$$n = 0$$
 $P(0)$ is true plus inductive step \implies true for $n = 1$ $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for $n = 2$ $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for
$$n = k \implies$$
 true for $n = k + 1$ $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers! Proof by Induction.

Induction

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!!

Next Time.

More induction! "See you" on Tuesday!