CS70: Lecture 18.

Bayes’ Rule, Mutual Independence, Collisions and Collecting
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Conditional Probability: Review

Recall:

> PriAB| = Bl

> Hence, Pr[AnB] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A].

> Aand B are positively correlated if Pr[A|B] > Pr[A],
i.e., if PrfANB] > Pr[A]Pr[B].

> Aand B are negatively correlated if Pr[A|B] < Pr[A],
i.e., if Pr[ANB] < Pr[A]Pr|[B].

> Aand B are independent if Pr[A|B] = Pr[A],
i.e., if PrfAN B] = Pr[A|Pr[B].

» Note: BC A= A and B are positively correlated.
(Pr{A|Bl=1> Pr[A])

» Note: AnB=0=-Aand B are negatively correlated.
(Pr[A|B] =0 < Pr[A])

Conditional Probability: Pictures

lllustrations: Pick a point uniformly in the unit square
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> Left: Aand B are independent. Pr[B] = b; Pr[B|A] = b.

> Middle: A and B are positively correlated.
Pr[B|A] = by > Pr[B|A] = by. Note: Pr[B] € (ba,b1).

> Right: Aand B are negatively correlated.
Pr[B|A] = by < Pr[B|A] = by. Note: Pr[B]  (by, by).

Bayes and Biased Coin
0.5

A Coin is fair

i Cloin is biased

0 0.6 1
B: Coin yields Heads

Pick a point uniformly at random in the unit square. Then

Pr[A] = 0.5; Prj{A] = 0.5

Pr[B|A] = 0.5; Pr[B|A] = 0.6; Prl[AN B] = 0.5 x 0.5

Pr[B] =0.5x0.5+0.5 x 0.6 = Pr[A]|Pr[B|A] + Pr[A|Pr[B|A]

PrAIB] - 0.5%0.5 _ PriAIPr[BIA] _
05%x0.5+0.5x0.6  Pr[A|Pr[B|A] + Pr[A|Pr[B|A]

~ 0.46 = fraction of B that is inside A

Bayes: General Case

D:UE( """" q 'A;“"I IA”

Event 5
Pick a point uniformly at random in the unit square. Then

PrlAm] =pm.m=1,....M

Pr(B|Am] = gm,m=1,...,M; PrlAnN B] = pmQm
Pr(B] = p1gi + -+ pmam

Pr{Am|B] = PmQm

———1— = fraction of Binside An,.
P1G1 + - Pmam

Bayes Rule

Another picture:

Pn = PT[An.]
Gn = PT’[B|A,)]

Loeees Ay disjoint
An AU UAy =0
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Why do you have a fever?

Prior Conditional
probabilities probabilities
015 ’ \ 080
Flu \
3 | '3
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' St
. High Fever
0.85 0.10
Using Bayes' rule, we find Other
0.15x0.80
Pr[Flu|High Fever] = ~0.58
[FlulHigh Fever] = & 6,80+ 10 8 x 17085 x 0.1
Pr{EbolalHigh Fever] = 1001 ~5x10°8
g T 015x080+10 8x1+0.85x01

0.85x 0.1

Pr[Other|High Fever] = 0.42

0.15x0.80+108 x 1+0.85x 0.1 =0
The values 0.58,5 x 10~8,0.42 are the posterior probabilities.

Why do you have a fever?
Our “Bayes’ Square” picture:
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Prior Conditional

probabilities D probabilities
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Ebola High Fever
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Other

1 Ebola

I Other

Green = Fever

0.10
58% of Fever = Flu
~ 0% of Fever = Ebola
42% of Fever = Other

Note that even though Pr[Fever|Ebola] = 1, one has

Pr[Ebola|Fever] ~ 0.

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

Pr[Flu|High Fever] ~ 0.58,

Pr[Ebola|High Fever] ~5x 1078,

Pr[Other|High Fever] ~ 0.42
One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high
fever.
‘Ebola’ is the Maximum Likelihood Estimate (MLE) of the cause: it causes the

fever with the largest probability.
Recall that

PmQm
= Pr[Am].gm = Pr[B|Am], Pr[Am|B]= ————————.
Pm [Aml, gm [BIAm], Pr{Am|B] PG+ + P

Thus,
» MAP = value of m that maximizes pmqm.
» MLE = value of m that maximizes gnm.

Bayes’ Rule Operations

[Environment)]
Priors:
Pr[A,] Posteriors:
' Bayes” Rule Pr[A,|B]

Observe B —»

Conditional:
Pr[B|A,)]
[Model of system|

Bayes’ Rule is the canonical example of how information
changes our opinions.

Thomas Bayes

Thomas Bayes

Portrait used of Bayes in a 1936 book, but it is
doubful whether the portrait is actually of him.

No earlier portrait or claimed portrait survives.

Born . 1701
London, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English

Known for Bayes' theorem

Source: Wikipedia.

Independence
Recall :

A and B are independent
< Pr[AnB] = Pr[A|Pr[B]
& Pr[A|B] = Pr[A].

Consider the example below:

00.15

0 0.25

00.1

(A2, B) are independent: Pr[Az|B] = 0.5 = Pr[Az].

(Ag, B) are independent: Pr[A;|B] = 0.5 = Pr[Ay].
(A1, B) are not independent: Pr[A;|B] = §:1 = 0.2 # Pr[A;] = 0.25.




Pairwise Independence

Flip two fair coins. Let
> A="firstcoinis H = {HT,HH};
» B="'second coinis H' = {TH, HH};
> C = ‘the two coins are different’ = { TH,HT}.
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A, C are independent; B, C are independent;
AN B, C are not independent. (Prf[AnBN C] = 0 # Pr[An B]Pr[C].)

Here, A did not say anything about C and B did not say
anything about C, but AN B still said something about C.

Example 2

Flip a fair coin 5 times. Let A, = ‘coin nis H’, forn=1,...,5.

Then,
Am,An are independent for all m# n.

Also,
Aq and Az N As are independent.
Indeed,
1
PI'[A1 ﬁ(A3 ﬁAs)] = g = PI’[A1]PI’[A30A5]
. Similarly,

AN A and A3 N A4 N As are independent.

This leads to a definition ....

Mutual Independence

Definition Mutual Independence
(a) The events Aq,...,As are mutually independent if

Pr[ﬂkeKAk] = I'IkeKPr[Ak], forall K C {1,,5}

(b) More generally, the events {A;,j € J} are mutually
independent if

Pr{nkexAk] = Nkek Pr[Ag], for all finiteK C J.

Example: Flip a fair coin forever. Let A, = ‘coin nis H’ Then the
events A, are mutually independent.

Mutual Independence

Theorem

(a) If the events {A;,j € J} are mutually independent and if K;
and K are disjoint finite subsets of J, then

Nkek, Ak and Ngck, Ak are independent.

(b) More generally, if the K, are pairwise disjoint finite subsets
of J, then the events

Nkek,Ax are mutually independent.

(c) Also, the same is true if we replace some of the Ay by Ay.

Proof:
Left as an exercise! ]

Balls in bins

One throws m balls into n > m bins.

Balls in bins

One throws m balls into n > m bins.

&

Prlbin k] 1

€
A‘// \- for k = l.fl...n
LLof8 | o]
[e][e e)
L \— Collision !

Theorem:
Pr[no collision] ~ exp{fg}, for large enough n.




Balls in bins Balls in bins The Calculation.
Theorem: A; = no collision when ith ball is placed in a bin.
Pr[no collision] ~ exp{f'znz—n}, for large enough n. Pr{AIAL_ 1N NA] = (1 - 1),
L Theorem: no collision = AyN---NAnm.
0ol N\ Pr[no collision] ~ exp{—z—mj}, for large enough n. Product rule:
gl 3 n=20 Pr{Ai NN Am] = PriA]PrAs| Al PrlAml A1 O+ 0 A1
o7 In particular, Pr[no collision] = 1/2 for m?/(2n) = In(2), i.e., - 1 m—1
= Pr[no collision] = | 1 ) 1-— )
b m=+/2In(2)n=1.2y/n.
(1] SRR \ - E.g., with m = 6 one has Hence!
E‘ ’r[collision] > 1/2 ~ m—1 m—1 k
o :\ Prlcollision] > 1/2 E.g., 1.2V20~5.4. In(Pr{no collision]) = ¥ In(1— %) ~Yy (,E) (%)
03 : \ Roughly, Pr(collision] ~ 1/2 for m = /n. (€7%5~0.6.) k=1 k=1
02 : : _ Amm=n)®
01 Pr(no rul:lisnm -7 /"‘\‘M 2n n 2 2n
0 ‘ : = (*) We used In(1 — ) ~ — for |g| < 1.
0 5 10 15 20
1424 4+m—1=(m-1)m/2.
Approximation Today’s your birthday, it's my birthday too.. Checksums!
02 Consider a set of m files.
015k R Each file has a checksum of b bits.
o1 Probability that m people all have different birthdays? How large should b be for Prshare a checksum] < 1087
ol DN With n= 365, one finds Claim: b >2.9In(m) +9.
0 Pr[collision] ~ 1/2 if m~ 1.2/365 ~ 23. Proof:
o \_ If m= 60, we find that Let n= 2P be the number of checksums.
o > 2 602 We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 — m?/(2n).
01 Pr[no collision] ~ exp{— ==} = exp{—5——==} ~ 0.007. Hence
\\ 2n 2 x 365 ’
¢ Pr{no collision] ~ 11073 & m?/(2n) ~ 1073

1
exp{—X}=1—x+-x2+---

Hence, —x =~ In(1

2!
—x) for |x| < 1.

~1—x, for |x| < 1.

If m =366, then Pr[no collision] = 0. (No approximation here!)

& 2n~ mP10°% 2011 & nP210
< b+1~10+2logy(m) ~10+2.9In(m).

Note: logo(x) = logo(e)In(x) ~ 1.441In(x).




Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Primiss one specific item] ~ e~ 7

m
n

(b) Pr[miss any one of the items] < ne~n.

Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — 1)
Fail the second time: (1 —1)
And so on ... for m times. Hence,

1

PriAm] = (1—E)><~~~><(1—I17)
1l'l'l
= (1-)

In(Pr{Am]) = m|n(1—%)zm><(_%)

Pr[An] exp{—%}.

Q

For pm = % we need around nin2 = 0.69n boxes.

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: Ex = ‘fail to get player k', fork =1, ..., n
Probability of failing to get at least one of these n players:

p .= PI’[E1 UE2~'~UEn]
How does one estimate p? Union Bound:
p=Prl[E{UE---UE) < PrlE1]+ Pr[Es]--- Pr[Ep).

Pr[Ek]ze’%,k:L...,n.
Plug in and get

313

Collect all cards?

Thus,

m
n

Pr[missing at least one card] < ne™n.

Hence,

n

Pr[missing at least one card] < p when m > nIn(p).

Togetp=1/2, set m=nin(2n).
E.g., n=102 = m=530;n=10% = m = 7600.

Summary.

‘Bayes’ Rule, Mutual Independence, Collisions and CoIIecting‘

Main results:

» Bayes’ Rule: Pr[Am|B] = pmQm/(P1G1 + -+ PmQm)-
» Product Rule:

PF[A1 ﬁ-~~ﬂAn] = PI’[A1]PF[A2|A1]PI’[A,7‘A1 ﬂ-~~ﬁAn,1].
» Balls in bins: mballs into n > m bins.

m2
Pr[no collisions] ~ exp{—ﬁ}

» Coupon Collection: nitems. Buy m cereal boxes.

m
n

Pr[miss one specific item] ~ e n; Pr[miss any one of the items] <ne~ .

Key Mathematical Fact: In(1—¢) ~ —¢.




