
70: Discrete Math and Probability Theory

Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
Logic and Proofs!
Induction ≡ Recursion.

What can computers do?
Work with discrete objects.
Discrete Math =⇒ immense application.

Computers learn and interact with the world?
E.g. machine learning, data analysis, robotics, ...
Probability!
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Probability Unit

• How can we predict unknown future events (e.g., gambling profit, 
next week rainfall, traffic congestion, …)?

– Constructive Models: Model the overall system (including the sources of 
uncertainty).
 For modeling uncertainty, we’ll develop probabilistic models and techniques for 

analyzing them.

– Deductive Models: Extract the “trend” from the previous outcomes (e.g., 
linear regression).
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Wason’s experiment:1

Suppose we have four cards on a table:

I 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.

I Card contains person’s destination on one side,
and mode of travel.

I Consider the theory:
“If a person travels to Chicago, he/she flies.”

I Suppose you see that Alice went to Baltimore, Bob drove,
Charlie went to Chicago, and Donna flew.

Alice

Baltimore

Bob

drove

Charlie

Chicago

Donna

flew

I Which cards must you flip to test the theory?

Answer: Later.
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The language of proofs!
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2. Propositional Forms.

3. Implication.

4. Truth Tables

5. Quantifiers

6. More De Morgan’s Laws
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Propositions: Statements that are true or false.

√
2 is irrational

Proposition True

2+2 = 4

Proposition True

2+2 = 3

Proposition False

826th digit of pi is 4

Proposition False

Johnny Depp is a good actor

Not Proposition

Any even > 2 is sum of 2 primes

Proposition False

4+5

Not Proposition.

x +x

Not a Proposition.

Alice travelled to Chicago

Proposition. False
I love you. Hmmm. Its complicated.

Again: “value” of a proposition is ...

True or False
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Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): P ∧Q

“P ∧Q” is True when both P and Q are True . Else False .

Disjunction (“or”): P ∨Q

“P ∨Q” is True when at least one P or Q is True . Else False .

Negation (“not”): ¬P

“¬P” is True when P is False . Else False .

Examples:

¬ “(2+2 = 4)” – a proposition that is ... False

“2+2 = 3”∧ “2+2 = 4” – a proposition that is ... False

“2+2 = 3”∨ “2+2 = 4” – a proposition that is ... True
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Put them together..

Propositions:
P1 - Person 1 rides the bus.

P2 - Person 2 rides the bus.
....

But we can’t have either of the following happen; That either person 1
or person 2 ride the bus and person 3 or 4 ride the bus. Or that
person 2 or person 3 ride the bus and that either person 4 rides the
bus or person 5 doesn’t.

Propositional Form:
¬(((P1∨P2)∧ (P3∨P4))∨ ((P2∨P3)∧ (P4∨¬P5)))

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?

This seems ...complicated.

We can program!!!!

We need a way to keep track!
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Truth Tables for Propositional Forms.
“P ∧Q” is True when

both P and Q are True .

P Q P ∧Q
T T T
T F

F

F T

F

F F

F

“P ∨Q” is True when
≥ one of P or Q is True .

P Q P ∨Q
T T

T

T F

T

F T

T

F F

F

Check: ∧ and ∨ are commutative.
One use for truth tables: Logical Equivalence of propositional forms!

Example: ¬(P ∧Q) logically equivalent to ¬P ∨¬Q.

Same Truth
Table!

P Q ¬(P ∨Q) ¬P ∧¬Q
T T

F F

T F

F F

F T

F F

F F

T T

DeMorgan’s Law’s for Negation: distribute and flip!

¬(P ∧Q)

≡ ¬P ∨¬Q

¬(P ∨Q)

≡ ¬P ∧¬Q
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Distributive?

P ∧ (Q∨R)≡ (P ∧Q)∨ (P ∧R)?

Simplify: (T ∧Q)≡Q, (F ∧Q)≡ F .

Cases:
P is True .

LHS: T ∧ (Q∨R)≡ (Q∨R).
RHS: (T ∧Q)∨ (T ∧R)≡ (Q∨R).

P is False .
LHS: F ∧ (Q∨R)≡ F .
RHS: (F ∧Q)∨ (F ∧R)≡ (F ∨F )≡ F .

P ∨ (Q∧R)≡ (P ∨Q)∧ (P ∨R)?

Simplify: T ∨Q ≡ T , F ∨Q ≡Q. ...

Foil 1:
(A∨B)∧ (C∨D)≡ (A∧C)∨ (A∧D)∨ (B∧C)∨ (B∧D)?

Foil 2:
(A∧B)∨ (C∧D)≡ (A∨C)∧ (A∨D)∧ (B∨C)∧ (B∨D)?
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Implication.

P =⇒ Q interpreted as

If P, then Q.

True Statements: P, P =⇒ Q.
Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
P = “you stand in the rain”
Q = “you will get wet”

Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”

Statement:
If a right triangle has sidelengths a≤ b ≤ c, then a2 +b2 = c2.

P = “a right triangle has sidelengths a≤ b ≤ c”,
Q = “a2 +b2 = c2”.
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Non-Consequences/consequences of Implication
The statement “P =⇒ Q”

only is False if P is True and Q is False .

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?

Not necessarily.

P =⇒ Q and Q are True does not mean P is True

Be careful!

Instead we have:
P =⇒ Q and P are True does mean Q is True .

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication?
((P =⇒ Q)∧P) =⇒ Q.
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Implication and English.
P =⇒ Q
Poll.

I If P, then Q.

I Q if P.
Just reversing the order.

I P only if Q.
Remember if P is true then Q must be true.

this suggests that P can only be true if Q is true.
since if Q is false P must have been false.

I P is sufficient for Q.
This means that proving P allows you
to conclude that Q is true.

Example: Showing n > 4 is sufficient for showing n > 3.

I Q is necessary for P.
For P to be true it is necessary that Q is true.
Or if Q is false then we know that P is false.

Example: It is necessary that n > 3 for n > 4.
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¬P ∨Q ≡ P =⇒ Q.

These two propositional forms are logically equivalent!
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Contrapositive, Converse
I Contrapositive of P =⇒ Q is ¬Q =⇒ ¬P.

I If the plant pollutes, fish die.
I If the fish don’t die, the plant does not pollute.

(contrapositive)

I If you stand in the rain, you get wet.
I If you did not stand in the rain, you did not get wet.

(not contrapositive!)

converse!

I If you did not get wet, you did not stand in the rain.
(contrapositive.)

Logically equivalent! Notation: ≡.
P =⇒ Q ≡ ¬P ∨Q ≡ ¬(¬Q)∨¬P ≡ ¬Q =⇒ ¬P.

I Converse of P =⇒ Q is Q =⇒ P.
If fish die the plant pollutes.
Not logically equivalent!

I Definition: If P =⇒ Q and Q =⇒ P is P if and only if Q or
P ⇐⇒ Q.
(Logically Equivalent: ⇐⇒ . )
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Variables.
Propositions?

I ∑
n
i=1 i = n(n+1)

2 .

I x > 2

I n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = “x is even”
Same as boolean valued functions from 61A!

I P(n) = “∑n
i=1 i = n(n+1)

2 .”

I R(x) = “x > 2”

I G(n) = “n is even and the sum of two primes”

I Remember Wason’s experiment!
F (x) = “Person x flew.”
C(x) = “Person x went to Chicago

I C(x) =⇒ F (x). Theory from Wason’s.
If person x goes to Chicago then person x flew.

Next: Statements about boolean valued functions!!
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Quantifiers..
There exists quantifier:

(∃x ∈ S)(P(x)) means “There exists an x in S where P(x) is true.”

For example:
(∃x ∈ N)(x = x2)

Equivalent to “(0 = 0)∨ (1 = 1)∨ (2 = 4)∨ . . .”
Much shorter to use a quantifier!

For all quantifier;
(∀x ∈ S) (P(x)). means “For all x in S, P(x) is True .”

Examples:

“Adding 1 makes a bigger number.”

(∀x ∈ N) (x +1 > x)

”the square of a number is always non-negative”

(∀x ∈ N)(x2 >= 0)

Wait! What is N?
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Quantifiers: universes.

Proposition: “For all natural numbers n, ∑
n
i=1 i = n(n+1)

2 .”

Proposition has universe:

“the natural numbers”.

Universe examples include..

I N= {0,1, . . .} (natural numbers).

I Z= {. . . ,−1,0, . . .} (integers)

I Z+ (positive integers)

I R (real numbers)

I Any set: S = {Alice,Bob,Charlie,Donna}.
I See note 0 for more!

Other proposition notation(for discussion):
“d |n” means d divides n

or ∃k ∈ Z,n = kd .
2|4? True.
4|2? False.
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Back to: Wason’s experiment:1
Theory:

“If a person travels to Chicago, he/she flies.”

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = “x went to Chicago.” Flew(x) = “x flew”

Statement/theory: ∀x ∈ {A,B,C,D},Chicago(x) =⇒ Flew(x)

Chicago(A) = False . Do we care about Flew(A)?
No. Chicago(A) =⇒ Flew(A) is true.

since Chicago(A) is False ,

Flew(B) = False . Do we care about Chicago(B)?
Yes. Chicago(B) =⇒ Flew(B) ≡ ¬Flew(B) =⇒ ¬Chicago(B).
So Chicago(Bob) must be False .

Chicago(C) = True . Do we care about Flew(C)?
Yes. Chicago(C) =⇒ Flew(C) means Flew(C) must be true.

Flew(D) = True . Do we care about Chicago(D)?
No. Chicago(D) =⇒ Flew(D) is true when Flew(D) is true.

Only have to turn over cards for Bob and Charlie.
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More for all quantifiers examples.

I “doubling a number always makes it larger”

(∀x ∈ N) (2x > x) False Consider x = 0

Can fix statement...

(∀x ∈ N) (2x ≥x) True

I “Square of any natural number greater than 5 is greater than 25.”

(∀x ∈ N)(x > 5 =⇒ x2 > 25).

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.
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Quantifiers..not commutative.

I In English: “there is a natural number that is the square of every
natural number”.

(∃y ∈ N) (∀x ∈ N) (y = x2) False

I In English: “the square of every natural number is a natural
number.”

(∀x ∈ N)(∃y ∈ N) (y = x2) True
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Quantifiers....negation...DeMorgan again.

Consider
¬(∀x ∈ S)(P(x)),

English: there is an x in S where P(x) does not hold.

That is,
¬(∀x ∈ S)(P(x)) ⇐⇒ ∃(x ∈ S)(¬P(x)).

What we do in this course! We consider claims.

Claim: (∀x) P(x) “For all inputs x the program works.”
For False , find x , where ¬P(x).

Counterexample.
Bad input.
Case that illustrates bug.

For True : prove claim. Next lectures...
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Negation of exists.

Consider

¬(∃x ∈ S)(P(x))

English: means that there is no x ∈ S where P(x) is true. English:
means that for all x ∈ S, P(x) does not hold.

That is,
¬(∃x ∈ S)(P(x)) ⇐⇒ ∀(x ∈ S)¬P(x).
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Which Theorem?

Theorem: (∀n ∈ N) ¬(∃a,b,c ∈ N) (n ≥ 3 =⇒ an +bn = cn)

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12
and ...

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: ¬(∃n ∈ N) (∃a,b,c ∈ N) (n ≥ 3 =⇒ an +bn = cn)
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Summary.
Propositions are statements that are true or false.

Proprositional forms use ∧,∨,¬.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ⇐⇒ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P
Converse: Q =⇒ P

Predicates: Statements with “free” variables.

Quantifiers: ∀x P(x), ∃y Q(y)

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
¬(P ∨Q) ⇐⇒ (¬P ∧¬Q)
¬∀x P(x) ⇐⇒ ∃x ¬P(x).

Next Time: proofs!
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