
CS70 Discrete Mathematics and Probability Theory, Fall 2018

Midterm 1 8:00-10:00pm, 24 September

Your First Name: Your Last Name:

SIGN Your Name: Your SID Number:

Your Exam Room:

Name of Person Sitting on Your Left:

Name of Person Sitting on Your Right:

Name of Person Sitting in Front of You:

Name of Person Sitting Behind You:

Instructions:

(a) As soon as the exam starts, please write your student ID in the space provided at the top of every
page! (We will remove the staple when scanning your exam.)

(b) There are 6 double-sided sheets (12 numbered pages) on the exam. Notify a proctor immediately if a
sheet is missing.

(c) We will not grade anything outside of the space provided for a question (i.e., either a designated box
if it is provided, or otherwise the white space immediately below the question). Be sure to write your
full answer in the box or space provided! Scratch paper is provided on request; however, please
bear in mind that nothing you write on scratch paper will be graded!

(d) The questions vary in difficulty, so if you get stuck on any question it may help to leave it and return
to it later.

(e) On questions 1-2: You need only give the answer in the format requested (e.g., True/False, an expres-
sion, a statement.) An expression may simply be a number or an expression with a relevant variable
in it. For short answer questions, correct, clearly identified answers will receive full credit with no
justification. Incorrect answers may receive partial credit.

(f) On questions 3-6, you should give arguments, proofs or clear descriptions if requested. If there is a
box you must use it for your answer: answers written outside the box may not be graded!

(g) You may consult one two-sided “cheat sheet” of notes. Apart from that, you may not look at any other
materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

(h) You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture.

(i) You have 120 minutes: there are 6 questions on this exam worth a total of 135 points.

[exam starts on next page]
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1. True/False [No justification; answer by shading the correct bubble. 2 points per answer; total of 32 points.
No penalty for incorrect answers.]

(a) Let P (x), Q(x) be propositions involving a natural number x. Suppose you are asked to prove that the
following statement is FALSE: (∀x ∈ N)(P (x) ⇒ Q(x)). Which of the following would constitute a
valid proof strategy? Answer YES or NO for each by shading the appropriate bubble.

YES NO

~ n Find some x for which P (x) holds and Q(x) does not hold. 2pts

n ~ Find some x for which both P (x) and Q(x) hold. 2pts

n ~ Show that P (x) holds for all x. 2pts

~ n Show that Q(x) doesn’t hold for any x, and find some x for which P (x) holds. 2pts

n ~ Show that Q(x) holds for all x, and find some x for which P (x) doesn’t hold. 2pts

(b) The following True/False questions concern the stable marriage problem. The term “traditional SMA”
denotes the propose-and-reject algorithm described in class, in which men propose to women. Answer
TRUE or FALSE for each by shading the appropriate bubble.

TRUE FALSE

~ n A non-stable pairing can have more than one rogue couple. 2pts

n ~ For every problem instance, there exist at least two distinct stable pairings. 2pts

~ n In the man-optimal stable pairing, it is possible for a man to be paired with his least favorite 2pts
woman.

n ~ In the man-optimal stable pairing, it is possible for two men to be paired with their least favorite 2pts
women.

n ~ If man M and woman W are each other’s respective least favorite choices, then M cannot be 2pts
matched with W in any stable pairing.

n ~ If the traditional SMA terminates after exactly k days on a given instance, then the women-optimal 2pts
SMA (in which the women propose to the men) also terminates after exactly k days on the same
instance.

[Q1 continued on next page]
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(c) Answer each of the following questions TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

~ n Every hypercube is bipartite. 2pts

n ~ A 10-dimensional hypercube has a cycle of length 5. 2pts

~ n The complete bipartite graph K2,n is planar for every n. [Recall that, for integers m,n ≥ 1, 2pts
Km,n is the bipartite graph with m vertices in one part, n in the other part, and all possible edges
between the two parts.]

~ n For any integer a, the equation 3x ≡ a (mod 101) always has a solution for x. 2pts

n ~ For any integer a, the equation 3x ≡ a (mod 102) always has a solution for x. 2pts
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2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification
necessary. 3 points per answer; total of 42 points. No penalty for incorrect answers.]

(a) Suppose that P (x, y) is a proposition that involves real numbers x and y. Write down quantified propo-
sitions that express each of the following statements:

(i) For some x, P (x, y) holds for all y. 3pts

(∃x)(∀y)P (x, y)

(ii) For every x, there is exactly one y such that P (x, y) holds. [Note: The only quantifiers you may 3pts
use are ∀ and ∃.]

(∀x)((∃y)P (x, y) ∧ (∀y∀z)((P (x, y) ∧ P (x, z)) ⇒ (y = z)))

(iii) For all x and y, if P (x, y) holds then P (y, x) does not hold. 3pts

(∀x∀y)(P (x, y) ⇒ ¬P (y, x))

(b) What is the minimum possible number of edges in a connected graph on n vertices (with no self-loops
or multiple edges between any pair of vertices)? 3pts

n− 1. [Such a graph is a tree.]

(c) What is the maximum possible number of edges in a disconnected graph on n vertices (with no self-
loops or multiple edges between any pair of vertices)? 3pts

(n− 1)(n− 2)/2. [Kn−1 plus an isolated vertex.]

(d) A connected planar graph G with 6 vertices and 11 edges is drawn in the plane. How many faces does
it have? 3pts

7. [Use Euler’s formula: f = e− v + 2.]

(e) A connected planar graph G has 100 vertices. What is the maximum possible number of edges in G? 3pts

294. [e ≤ 3v − 6. Note that this bound is attainable.]

[Q2 continued on next page]

Page 4



Your SID Number:

(f) Find the rightmost (least significant) digit of 793. 3pts

7. [Note that 72 = 49 ≡ 9 ≡ −1 (mod 10). Hence 793 = 7 · (72)46 ≡ 7 · (−1)46 ≡ 7 (mod 10).]

(g) Solve the equation 3x ≡ 7 (mod 8) for x. 3pts

5. [The inverse of 3 mod 8 is 3. Multiplying both sides by 3 gives: x ≡ 21 ≡ 5 (mod 8).]

(h) Suppose the 25th day of this year is a Monday. Which day of the week is the 50th day of next year
(assuming that this year has 365 days)? 3pts

Saturday. [Number of intervening days is 365 + 25 = 390 ≡ 5 (mod 7). 5 days after Monday is
Saturday.]

(i) What is 14201 (mod 15)? 3pts

14. [14 ≡ −1 (mod 15), so 14201 ≡ (−1)201 ≡ −1 ≡ 14 (mod 15).]

(j) Find 1! + 2! + 3! + 4! + . . . + 100! (mod 24). 3pts

9. [Since 4! = 24, we have 24 | k! for all k ≥ 4. Hence the sum reduces to 1! + 2! + 3! ≡ 9
(mod 24).]

(k) Find gcd(481, 91). 3pts

13. [gcd(481, 91) = gcd(91, 26) = gcd(26, 13) = gcd(13, 0) = 13.]

(l) Find the inverse of 27 mod 32. Your answer should be an integer in {0, 1, . . . , 31}. 3pts

19. [Use extended-gcd algorithm. Sequence of returned triples is: (1, 1, 0) → (1, 0, 1) → (1, 1,−2) →
(1,−2, 11) → (1, 11,−13). Hence inverse is −13 ≡ 19 (mod 32). Check: 19 × 27 = 513 ≡ 1
(mod 32).]
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3. Proofs [All parts to be justified. Total of 18 points.]

(a) Prove that
√

6 is irrational. 6pts

We follow the same strategy as the proof in lecture that
√

2 is irrational. Assume for the sake of
contradiction that

√
6 is rational, so we can write

√
6 =

a

b
, (1)

where a, b are positive integers that share no common factors.
Squaring both sides of (1) gives 6 = a2

b2
, and hence

a2 = 6b2. (2)

Now this implies that 6 | a2, which in turn implies that 6 | a (see Lemma below). Hence we may write
a = 6k for some positive integer k, and substituting this into (2) gives

36k2 = 6b2.

Therefore, b2 = 6k2, so 6 | b2 and hence, using the Lemma again, 6 | b.
Finally, we have shown that 6 is a common factor of a and b, which is a contradiction to our initial
assumption that a, b have no common factors. �

Twice in the above proof, we used the following lemma, which we need to prove.

Lemma: For a natural number a, if a2 is divisible by 6 then a is divisible by 6.

Proof: We prove the contrapositive. Suppose that a is not divisible by 6. Then at least one of 2 and 3
(the prime factors of 6) must not be a factor of a. But this means that at least one of 2 and 3 must not
be a factor of a2, so a2 is not divisible by 6. �

(b) Prove by induction that, for all odd n ≥ 1, 2n + 1 is divisible by 3. 6pts

For n ≥ 0, let P (n) denote the following proposition: “22n+1 + 1 is divisible by 3.” We will prove
(∀n ∈ N)P (n) by induction on n. Note that this proves the statement in the question as the sequence
P (0), P (1), P (2), . . . covers all odd powers of 2.

Base Case: n = 0: The statement P (0) says that 21 +1 = 3 is divisible by 3, which is obviously true.

Inductive Step: We assume P (n) holds for all n ≤ k and prove P (k + 1). P (k + 1) asserts that the
number 22(k+1)+1 + 1 is divisible by 3. But we can write

22(k+1)+1 + 1 = 4 · 22k+1 + 1 = 4 · (22k+1 + 1)− 3.

By the induction hypothesis P (k), 22k+1 + 1 is divisible by 3, and hence the entire number above is
also divisible by 3. This completes the induction step.

[Q3 continued on next page]
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(c) The so-called “Tribonacci” sequence T (n) is defined as follows: 6pts

T (0) = T (1) = 0; T (2) = 1; T (n) = T (n− 1) + T (n− 2) + T (n− 3) for n ≥ 3.

Prove by induction that T (n) ≤ 2n for all n ≥ 0.

We proceed by strong induction on n.

Base Case: There are three base cases, n = 0, 1, 2. Thus we need to prove:

T (0) ≤ 20 = 1; T (1) ≤ 21 = 2; T (2) ≤ 22 = 4.

All of these follow immediately from the given values T (0) = T (1) = 0 and T (2) = 1.

Inductive Step: For any k ≥ 3, we assume that T (n) ≤ 2n for all n ≤ k and prove that T (k + 1) ≤
2k+1 also holds. To see this, note that

T (k + 1) = T (k) + T (k − 1) + T (k − 2)
≤ 2k + 2k−1 + 2k−2 by induction hypothesis

= 2k−2(4 + 2 + 1)
= 7 · 2k−2

≤ 2k+1.

This verifies that the inequality also holds for T (k + 1), and hence completes the induction proof.
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4. Stable Marriage [All parts to be justified unless otherwise stated. Total of 13 points.]

Consider the following set of marriage preferences for four men 1, 2, 3, 4 and four women A, B, C, D.

Man Women
1 B D A C
2 C A B D
3 B D C A
4 C B A D

Woman Men
A 3 4 1 2
B 2 4 3 1
C 1 2 3 4
D 2 3 4 1

(a) Use the Propose-and-Reject algorithm to find a male-optimal pairing. Show your work in the table 4pts
below: you should indicate in each column the proposals received by each woman on each day. Note:
The algorithm may terminate in fewer than the 6 days provided!

To ensure a male-optimal pairing, we run the propose-and-reject algorithm with the men proposing.
The following table shows the proposals received by each woman on each day.

Woman Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

A 1

B 1, 3 3, 4 4 4

C 2, 4 2 2 2

D 1 1, 3 3

The algorithm terminates with the male-optimal pairing (1, A), (2, C), (3, D), (4, B).

(b) Is it possible for man 4 to be paired with woman C in a stable pairing? Briefly justify your answer 3pts
using the optimality/pessimality properties of stable pairings.

No. The above pairing is male optimal, so the best possible woman that man 4 can be paired with
in any stable pairing is B. Since C is above B in his preference list, he can’t be paired with C.

(c) Is it possible for man 2 to be paired with woman A in a stable pairing? Briefly justify your answer 3pts
using the optimality/pessimality properties of stable pairings.

No. The above pairing is female pessimal, so the worst man that woman A can be paired with in
any stable pairing is 1. Since 2 is below 1 on her preference list, she can’t be paired with 2.

[Q4 continued on next page]
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(d) Suppose we add k new men and k new women to the above instance. The preference lists of these 3pts
new people are completely arbitrary orderings on the k + 4 people of the opposite gender. The prefer-
ence list of each of the original four men and four women starts off exactly as above, followed by an
arbitrary ordering of the new people of the opposite gender. Prove that any stable pairing of the larger
instance must include a stable pairing of the original 4-man, 4-woman instance above. [Note: This
proof is fairly short; you probably won’t need all the space below.]

Consider any pairing for the larger instance in which some man M ∈ {1, 2, 3, 4} is paired with some
woman W /∈ {A,B,C,D}. Then there must exist some man M ′ /∈ {1, 2, 3, 4} who is paired with
a woman W ′ ∈ {A,B,C,D}. We claim that (M,W ′) is a rogue couple, so no such pairing can be
stable.
To see that (M,W ′) is a rogue couple, note that M prefers all the women in {A,B,C,D} to all the
other women, so he certainly prefers W ′ to his current partner W . Similarly, W ′ prefers all the men in
{1, 2, 3, 4} to all the other men, so she prefers M to her current partner M ′. Hence (M,W ′) is indeed
a rogue couple, as claimed.
We have proved that any stable pairing for the larger instance must match men in {1, 2, 3, 4} with
women in {A,B,C,D}. Clearly this pairing restricted to these four men and women must itself be
stable, since any rogue couple within this group would be a rogue couple for the whole pairing on the
larger instance.
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5. Grid Graphs. [All parts to be justified unless otherwise stated. Total of 18 points.]

For integers m,n ≥ 2, an m × n grid graph is an undirected graph drawn in the plane, with mn vertices
positioned at the integer points (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. An edge is drawn between each pair of
points whose distance in the plane is exactly 1. The figure below shows a 3× 6 grid graph.

(a) How many edges are there in an m× n grid graph? Write your answer in the box provided; no justifi- 2pts
cation is needed.

2nm−m− n total. [n(m− 1) vertical edges + m(n− 1) horizontal edges.]

(b) How many faces are there in an m× n grid graph? Write your answer in the box provided; no justifi- 2pts
cation is needed.

(n− 1)(m− 1) + 1. [(n− 1)(m− 1) interior square faces + 1 outer face.]

(c) Verify that the grid graph satisfies Euler’s formula. 2pts

v − e + f = nm− (2nm−m− n) + (n− 1)(m− 1) + 1 = 2.

(d) For which values of n and m does the grid graph have an Eulerian tour? Write your answer in the box 2pts
provided; no justification is needed.

For n = m = 2 only. [For all other values of n, m, the graph has odd-degree vertices.]

(e) Recall that a Hamiltonian cycle in a graph is a (simple) cycle that visits every vertex exactly once. 2pts
Draw a Hamiltonian cycle in the 3 × 6 grid graph below. [Note: You may use the diagram at the top
of the page to experiment; please clearly show your final answer on the diagram below!]

This grid graph has four Hamiltonian cycles, as follows:

[Q5 continued on next page]
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(f) Prove by induction on n that, for every even n ≥ 2, every m× n grid graph has a Hamiltonian cycle. 5pts
[Hint: Consider a systematic way of drawing a Hamiltonian cycle; strengthen your induction hypoth-
esis.]

For ` ≥ 1, let P (`) denote the following proposition: “For every m ≥ 2, the m × 2` grid has a
Hamiltonian cycle that traverses one of the vertical edges on its rightmost boundary (i.e., a vertical
edge on the line x = m).” We prove (∀` ≥ 1)P (`) by induction on `.

Base Case: ` = 1: For every m ≥ 2, the m × 2 grid obviously has such a Hamiltonian cycle (just
trace around the outer face).

Inductive Step: Assume that P (`) holds for all ` ≤ k, and prove P (k+1). If we remove the rightmost
two columns of vertices from the m × 2(k + 1) grid, we are left with an m × 2k grid. Note that the
piece we removed is an m× 2 grid, connected by m horizontal edges to the remaining m× 2k grid.
By the induction hypothesis P (k), this m × 2k grid has a Hamiltonian cycle that includes one of the
vertical edges in its rightmost column. Also, the m × 2 grid we removed has a Hamiltonian cycle
running around its outer face (as argued for the base case above). Now we can splice these two cycles
together (see picture below: the dotted edges are removed and replaced by the two bold horizontal
edges connecting the two pieces) to obtain a Hamiltonian cycle of the entire m× 2(k + 1) grid. This
completes the inductive step.

(g) Prove that, if m and n are both odd, the m × n grid graph has no Hamiltonian cycle. [Hint: Give a 3pts
direct proof, not a proof by induction.]

The number of vertices in the grid graph is mn, which is odd if m, n are both odd. Thus any Hamilto-
nian cycle must have odd length. However, the grid graph is bipartite for any m,n. (To see this, color
its vertices in chessboard fashion, so that each black vertex is adjacent only to white vertices and vice
versa.) This means that any cycle in the graph must have even length. (An alternative way to argue that
any cycle must have even length is to observe that it must have an equal number of up/down moves
and left/right moves.) Hence it is not possible for a Hamiltonian cycle to exist.
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6. Modular Arithmetic and Random Number Generation [All parts to be justified unless otherwise stated.
Total of 12 pts.]

An important application of modular arithmetic is to generate a sequence of pseudo-random numbers
x0, x1, x2, . . ., defined by the recursion

xn = axn−1 (mod p), for n = 1, 2, . . .

Here p is a prime number, a is a positive integer such that a 6≡ 0 (mod p), and x0 ∈ Z+ is a seed (initial-
ization) satisfying x0 6≡ 0 (mod p). The period d is the smallest n ∈ Z+ such that xn ≡ x0 (mod p); note
that the sequence repeats after d numbers have been generated. We want to make d as large as possible: in
this problem, you will see how large d can possibly be, using basic facts about modular arithmetic.

(a) For n ∈ N, find xn as a function of n, a, and x0. Write your answer in the box provided; no justifica- 2pts
tion is needed.

xn = anx0 (mod p).

(b) Prove that ad ≡ 1 (mod p). 2pts

Since xd = adx0 ≡ x0 (mod p), we can multiply through by the inverse of x0 mod p (which ex-
ists since p is prime and x0 6≡ 0 (mod p)) to get ad ≡ 1 (mod p).

(c) Now let n0 be the smallest positive integer n such that an ≡ 1 (mod p). Prove that n0 divides all 4pts
positive integers n such that an ≡ 1 (mod p).

As defined in the question, let n0 be the smallest positive integer n such that an ≡ 1 (mod p), and let
n′ > n0 be any other positive integer such that an′ ≡ 1 (mod p). We want to show that n0 | n′.
Write n′ = qn0 + r, where q, r are positive integers with 0 ≤ r < n0. (I.e., n′ ≡ r (mod n0)). Since
an0 ≡ 1 (mod p), we have aqn0 ≡ 1 (mod p), and hence 1 ≡ an′

= aqn0 · ar ≡ ar (mod p). But
now we have found another integer 0 ≤ r < n0 such that ar ≡ 1 (mod p), which contradicts the fact
that n0 is the least such positive integer unless r = 0. But if r = 0 then n0 | n, as required.

(d) Finally, prove that the period d divides p− 1. State clearly which results you used to prove this claim; 4pts
in addition to earlier parts of this problem, you may use any of the theorems/lemmas from lecture.

Since p is prime and a 6≡ 0 (mod p), we know by Fermat’s Little Theorem that ap−1 ≡ 1 (mod p).
By part (b), we also know that ad ≡ 1 (mod p). In fact, our proof of part (b) also shows that d is the
smallest positive integer satisfying this equivalence, since if ad′ ≡ 1 (mod p) then xd′ = ad′

x0 ≡ x0

(mod p), and d is the smallest integer satisfying this latter equivalence. Therefore, by part (c), we
conclude that d | (p− 1), as required.

[Aside: In practice, a large prime number p is used and a is carefully chosen so that the period is as
large as possible, i.e., d = p− 1. For example, p = 231 − 1 and a = 75 yields d = p− 1.]
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