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1. TRUE or FALSE?: 2pts each
For each of the questions below, answer TRUE or FALSE.
Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!

Answer: Note that the answers provide explanations for your understanding, even though no such justifica-
tion was required

1. (¬P =⇒ R)∧ (¬P =⇒ ¬R)≡ P
Answer: True. This is proof by contradiction.

2. ∀x ∈ N,(P(x)∧ (∃y ∈ N,Q(x,y))≡ ∀y ∈ N,∃x ∈ N,P(x)∧Q(x,y).
Answer: False. P(x) is True. Q(x,y) is y > x.

3. (¬P(0)∧∀n ∈ N,(P(n) =⇒ P(n−1)))≡ ∀n ∈ N,¬P(n)
Answer: True. This is the well ordering principle on ¬P(n).

4. ∀x,((P(x) =⇒ Q(x))∧Q(x))≡ ∀x,P(x)
Answer: False. If Q(x) is true that implies nothing about P(x).

5. P∨Q≡ ¬P =⇒ Q Answer: True. This is the logical equivalence of P =⇒ Q and ¬P∨Q.
For the following two parts, assume that Q(x,y) and P(x) are predicates when x,y ∈ N.

6. “∀x ∈ N,P(x)” is a proposition.
Answer: TRUE. The forall x, eliminates the free variable, leaving a statement that is either true or
false depending on whether P(x) holds for every x ∈ N.

7. “∀x ∈ N,P(x)∧Q(x,y)” is a proposition.
Answer: False. It is a predicate where the free variable is y.

8. In a stable marriage instance where there is a man at the bottom of each woman’s preference list, the
man is paired with his least favorite woman in every stable pairing.
Answer: False. Consider lists M1: W1>W2, M2: W2>W1, W1: M1>M2, W2: M1>M2.

9. In a stable marriage instance where there is a man at the top of each woman’s preference list, the man
is paired with his favorite woman in every stable pairing.
Answer:
True, if M is the man at the top and his favorite woman is W, then if (M,W’) and (W,M’) are in a
pairing, (M,W) are a rogue couple because they mutually prefer each other.

10. Say I take a walk in any connected graph, making sure I only follow edges I haven’t followed before,
and keep walking until there are no edges I haven’t followed incident to the the vertex I am in. If in
the course of this walk I never see the same vertex twice then the degree of the vertex I get stuck at has
degree exactly one.
Answer: True. Since there is no cycle in the graph it is a simple path whose endpoints are degree 1.

11. For the stable roommates problem with 2n people, there is a stable pairing if every preference list has
the form {p1 > · · ·> p2n}, that is, i < j =⇒ pi > p j.
Answer: TRUE. The pairing (1,2),(3,4), . . . ,(2n−1,2n) is stable.

12. A graph with k edges and n vertices has a vertex of degree at least 2k/n.
Answer: True. The sum of degrees is 2k, there are n vertices. One is at least average.

13. If we remove one edge from Kn, the resulting graph can be vertex colored with n−1 colors.
Answer: True. Remove a vertex with degree n−2. If one has n−1 colors available, one can color it.
Henceforth, there is always a vertex of degree n−2.
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14. For a graph with average degree k, more than half of the vertices must have degree at most k.
Answer: False. Consider K8 where every node has degree 7, then remove 6 edges from two vertices.
6 vertices have degree at least 5 since the form K6, the number of edges is 16 corresponding to an
average degree of 32/8 of 4.

15. If one adds an edge to a graph G and vertex colors it with 3 colors, then the original graph G is 3-
colorable. Answer: True. The 3 coloring of the graph with an extra edge is a legal 3 coloring of G.

16. Any graph where |E| ≤ 3|V |−6 is planar.
Answer: FALSE. The four dimensional hypercube is not planar. It has degree 4 or |E| = 2|V | with
|V |= 16, so |E|= 32≤ 3(16)−6 = 42. It is not planar as discussed in the notes.

17. For every connected, undirected graph there is a tour that uses every edge at least once and at most
twice.
Answer: True. Take a graph and make two copies of each edge. Now the graph has even degree and
thus has an Eulerian tour that uses each edge once. This tour corresponds to using each original edge
twice.

18. Any connected graph with average degree strictly less than 2 is a tree.
Answer: True. It it is connected and has average degree less than 2 it must have |V |−1 edges exactly.
This means it is a tree.

19. Any walk in a hypercube that always traverses unused edges must return to the starting vertex before
getting stuck at a vertex where all the edges have been used.
Answer: False. For an n dimensional hypercube where n is odd, the degree is odd. In particular
consider a n = 1 hypecube which is an edge.

20. Any complete graph has a Hamiltonian tour. (Recall that a Hamiltonian tour is a cycle that visits every
vertex exactly once.)
Answer: True. Any ordering of the vertices corresponds to a Hamiltonian tour as every edge is present.

21. Any graph where every triple of vertices is a triangle, i.e., for vertices u,v,w ∈V , (u,v),(v,w),(w,u) ∈
E, is a complete graph.
Answer: True. This condition implies every edge is present.

22. If gcd(x,y) = d and gcd(y,z) = c, then gcd(x,z)≥ gcd(c,d).
Answer: True. Any divisor of c and d are divisors of x and y.

23. The map f (x) = ax (mod m) is a bijection from and to {0, . . . ,m−1}when gcd(a,m) = 1. (A function
f : A→ B is a bijection from A to B if it is it is one-to-one, f (x) 6= f (x′) for x 6= x′, and for y ∈ B, there
is a x ∈ A, where f (x) = y.)
Answer: True. The existence of an inverse yields this statement.

2. An expression or number: 3 points each. Clearly indicate your correctly formatted answer: this is
what is to be graded. No need to justify!

1. What is the minimum number of colors that are required to vertex color a graph that is a simple cycle
of length k for k ≥ 2 ? (Answer is an expression possibly involving k.)
Answer: 2+mod(k,2). For odd length cycles one needs 3 colors, for even one can use 2.

2. If gcd(x,y) = d then the smallest common multiple of x and y is?
Answer: xy/d.
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3. Let n be the largest number that Kn is a planar graph. How many faces does any planar drawing of
this graph have? (Answer is an expression or number.)
Answer: The number of vertices is 4, the number of edges is 6. The number of faces in a planar
drawing is e+2− v or 4.

4. Consider a planar graph G with e edges where each face is a triangle. How many vertices does it have?
(Answer is an expression or number.)
Answer: Euler’s formula: v+ f = e+2. Face edge incidences are 2e which equals 3 f . Plugging in,
we obtain v+ 2

3 e = e+2. Solving yields, v = 1
3 e+2.

5. How many solutions to 5x = 25 (mod 27)? (Answer is a number and recall that we are working
modulo 27 so the maximum number of solutions is 27.)
Answer: 1. gcd(5,27) = 1 so 5 has a multiplicative inverse modulo 27.

6. What day of the week is 10 years from today? (Note that there are two leap years between now and
then.)
Answer: Saturday. Thus, we get 365 ∗ 10+ 2 = 5 (mod 7) days from today, which is Monday, so
Saturday.

7. If we divide an n dimensional hypercube into two disjoint n− 1 dimensional hypercubes, how many
edges in the n dimensional hypercube have an endpoints in two different hypercubes. In other words,
how many edges “cross” between the subcubes. (Answer is an expression.)
Answer: 2n−1. Each vertex in one cube is connected to the corresponding vertex in the other one.

8. Consider the graph G formed with vertex set V = {0, . . . ,m−1}, and edge set E = {(x,y) : y = x+g
(mod m)} with g ∈ {0, . . . ,m/2− 1}. What is the maximum length cycle in this graph? (Answer is
an expression. It may involve g and m. )
Answer: d = m/gcd(g,m).

9. Recall that any graph where e > 3v−6 is non-planar. Given an example of a graph where e ≤ 3v−6
that is non-planar.
Answer: Either K3,3 or take an edge in K5 and split it into two edges.

10. Consider an n vertex planar graph with no degree one or two vertices. What is the minimum number
of edges in such a graph? (Answer is an expression perhaps involving n.)
Answer: 3n+mod(n,2)

2 . If n is even, every vertex can have degree 3, which suggests that there are 3n/2
edges. If n is odd at most n− 1 vertices have degree 3 and one has to have degree 4. Thus, the total
degree is 3n+ 1 and the total number of edges is (3n+ 1)/2. One can construct a graph by starting
with a cycle and connecting pairs of vertices that are two apart. If it is odd length, the pairing leaves
one out, and one can add an edge to that and any other vertex.

11. Give an example of a stable roommates instance with at least two stable pairings.
Answer: Use the basic example of 2 men, women with two stable pairs and make the same sex
preferences last.

12. Show how in any 2 by 2 instance of a stable marriage problem, the women can collaborate to produce
a women optimal pairing. (Note: the men must follow the TMA algorithm, but the women could reject
men who propose in an arbitrary fashion.) Answer is short argument.
Answer:
If both women have the same favorite man or both men have a single favorite women there is one
stable pairing; the one that contains that favorite along with her/his partner.
Otherwise the men and women all have different favorites. Thus, if the men propose on the first day,
if both woman get their favorite, they accept, otherwise they reject and the men move on and then the
women will get their favorites.
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Yaay. Down with this Tradition!
An easier solution is that the women can all precompute their optimal partner in any matching instance
and simple reject men until their optimal partner proposes.

3. Expression Proofs: 6/6/6

1. Prove: n2 6≡ 1 (mod 7) =⇒ n 6≡ 1 (mod 7)
Answer: Prove by contraposition.

2. Prove: ∀n ∈ N,n≥ 2 =⇒ (1−1/4)(1−1/9) · · ·(1−1/n2) = n+1
2n .

Answer: Base Case: True for n = 2.
Ind. Hyp: (1−1/4)(1−1/9) · · ·(1−1/n2) = n+1

2n .
Ind. Step.

(1−1/4)(1−1/9) · · ·(1−1/n2)(1−1/(n+1)2) =
n+1

2n
(1−1/(n+1)2)

=
n+1

2n
(

n+2n
(n+1)2

=
n+1

2n
(
n(n+2)
(n+1)2

=
n+2

2(n+1)

3. Use induction to prove that 1+ 1
2 + · · ·(

1
2)

n ≤ 2? (Hint: strengthen the statement.)
Answer: Statement: 1+ 1

2 + · · ·(
1
2)

n = 2− (1
2)

n

Base Case: n = 0. Plug in and we get 1 = 2− (1
2)

0.

Induction Step:

1+ · · ·+(
1
2
)n+1 = 2− (

1
2
)n +(

1
2
)n+1

= 2− ((
1
2
)n− (

1
2
)n+1)

= 2− (
1
2
)n+1

4. Graphs and modular: 5/5/5 points.

1. The integer a is a quadratic residue of n if gcd(a,n) = 1 and x2 ≡ a (mod n) has a solution. Prove that
if p is a prime number, p 6= 2, then there are (p−1)/2 quadratic residues of p among {1, . . . , p−1}.
Answer: Evaluate x2 for each x ∈ {1, . . . , p−1}. Notice that they appear in pairs because x2 = (−x)2.
Now there are (p−1)/2 pairs of quadratic residues and one then argues that they are distinct as follows.
Let x2 = y2 (mod p) or x2− y2 = (x− y)(x+ y) = 0 (mod p) which implies that x = y (mod p) and
x =−y (mod p).
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2. Consider a directed graph where every pair of vertices u and v are connected by a single directed arc
either from u to v or from v to u. Show that every vertex has a directed path of length at most two to
the vertex with maximum in-degree. Note that this is quite similar to a homework problem but asks
for a more specific answer. (Hint: Our solution doesn’t require induction.)
Answer: The total in-degree is the number of arcs which is n(n− 1)/2 and thus the vertex v with
maximum in-degree must have in-degree d at least (n−1)/2.
Thus, these d vertices has a path of length 1 to v. The other vertices, of which there are n−1−d, have
in-degree at most d and thus out-degree at least n−1−d, thus each must have an arc to one of the d
vertices directly connected to v.

3. Consider a simple n-vertex graph that contains a path,v1, . . . ,vn, of length n and where the degrees of
v1 and vn are at least n/2. Show the graph has a Hamiltonian cycle. (Recall a Hamiltonian cycle is one
that visits each vertex exactly once.)
Answer: If the ends are adjacent we simply add that edge to the path.
Otherwise, consider the edges (vi,vi+1) with i 6= 1 and i 6= n, where (vi+1,v1) is an edge. That is their
larger numbered endpoint is also adjacent to v1.
Notice there are at least n/2−1 such edges out of n−3 edges on their path.
Similarly, consider the edges (vi,vi+1) where (vi,vn) is an edge with i≤ n−1. Here we are considering
hitting the smaller numbered endpoint. Again there are at least n/2−1 such edges.
Since 2(n/2− 1) > n− 3, by the pigeonhole principle, there must there be an edge (vi,vi+1) where
(vi,vn) and (v1,vi+n) are edges.
Thus, the sequence v1, . . . ,vi,vn,vn−1, . . . ,vi+1 forms a cycle (since (vi,vn) and (vi+1,v1) are both edges
in the graph as are (vi,vi+1).

5. Reverse Preference Stable Marriage: 10 points.

A witch bewitches all the men just before a run of TMA so they propose in reverse order of their preference
lists (equivalent to the men giving reversed lists as inputs to TMA). The spell wears off after the algorithm is
run and a pairing is obtained. (Note : ONLY MALES reverse their preference lists and after the spell wears
off the men remember their original preferences)

1. Find the output pairings for the following two instances:
Instance 1:
Men
A:1,2
B:1,2

Women
1:B,A
2:A,B

Instance 2:
Men
A:1,2
B:2,1

Women
1:A,B
2:B,A

Answers only
Answer: {(A,2),(B,1)} , {(A,2),(B,1)}

2. Prove that the pairing is either unstable or all the women got their first choice male. (Hint: Consider
how to translate the notion of stability for the TMA pairing in this case. There is no couple (w∗,m)
such that w∗ has m higher than her partner m∗ and m has w∗ higher on his reversed list than his partner
w. )
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Answer: As per the hint, in the output pairing, there is no couple (w∗,m) such that (w∗ has m >
m∗)∧ (m has w∗ > w on reversed list). This is just because the SMA outputs a stable pairing wrt to its
input preference lists. Now note that (m has w∗ > w on reversed list) is equivalent to (m has w > w∗

on original list). So we have, there is no couple (w∗,m) such that (w∗ has m > m∗)∧ (m has w > w∗

on original list). This means for any woman w∗,
Case 1: w∗ prefers another man m to her partner m∗, then ¬(m has w > w∗ on his original preference
list) =⇒ (m has w∗ > w on his original preference list ) =⇒ (w∗,m) is a rogue couple.
Case 2: w∗ prefers no other man to her partner, i.e, she got her first choice.

6. Cycles, pairings, and circle of worry: 10 points.

1. Argue that any directed simple graph where every vertex has out-degree at least one has a directed
cycle.
Answer: Take a walk from a vertex, at each step one can leave since there is an outvertex unless you
have visited before, in which case there is a cycle.

2. Consider the graph formed with vertices corresponding to the men and women in a stable marriage
instance and edges according to two different stable pairings, S and S′. If a pair is in both pairings only
include a single edge in G, which ensures it is a simple graph. Argue that there is a cycle of length
strictly greater than 2.
Answer: Each man and woman has degree two in the non-simple graph consisting of the union of S
and S′, thus all are involved in a cycle. For at least one, woman the edges go to different man. Any
walk that starts at that woman must end at that woman, and must have length greater than two as the
two men immediately before and after are not the same.

3. Define a man m as feeling threatened by another man m′ with respect to a pairing S if (m,w) is in S
and w likes m′ better than m. We define the male feeling threatened graph for a stable pairing S as
the directed graph whose vertices are men and with a directed arc for each pair (m,m′) where m is
feeling threatened by m′. Show that the male feeling threatened graph for the male optimal pairing has
a cycle if there is more than one pairing. (Hint: using the previous parts may be helpful.)
Answer: Consider the union of the male optimal, S, and woman optimal, S′, pairings. There is a
non-trivial cycle in this graph, due to the above. Consider the men in that cycle. For some pair (m,w)
in that cycle, let (m′,w) ∈ S′. Here w prefers m′ to m since S′ is female optimal, and m′ is not m since
the cycle is non-trivial. Thus, m has outdegree 1 in the associated male feeling threatened graph. By
(a), the feeling threatened graph has a cycle.
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