
CS 70 Discrete Mathematics and Probability Theory
Spring 2019 Ayazifar and Rao Midterm 2 Solutions
PRINT Your Name: Oski Bear

SIGN Your Name: OS K I

Do not turn this page until your instructor tells you to do so.

1. TRUE or FALSE? 2 points each part, 26 total.
For each of the questions below, answer TRUE or FALSE. No need to justify answer.

Please fill in the appropriate bubble!

Answer: Note that the answers provide explanations for your understanding, even though no such justifica-
tion was required

1. (P =⇒ (R∧¬R)) =⇒ ¬P
Answer: True. This is the form of a proof by contradiction of ¬P.

2. Let Z be the integers, and P(i) be a predicate on integers,
(P(0)∧ ((∃i ∈ Z) P(i)∧P(i+1)) =⇒ (∀i ∈ Z) ((i≥ 0) =⇒ P(i)))
Answer: False. Just because a particular i makes P(i)∧P(i+ 1) true does not mean P(i) is true for
every i. Consider the predicate P such that P(0), P(4) and P(5) are true, and false everywhere else.
Then this predicate satisfies the left hand side of the implication but not the right hand side.

3. Let R be the real numbers, (∀x,y ∈ R)((x < y) =⇒ ((∃z ∈ R) (x < z < y))))
Answer: True. There is always a real number between any two real numbers.

4. Let Q be the rational numbers, (∀x,y ∈Q)((x < y) =⇒ ((∃z ∈Q) (x < z < y))))
Answer: True. There is always a rational number between any two rational numbers.

5. Any stable pairing that is optimal for one man is optimal for all men.
Answer: False. Construct a stable marriage instance from two instances by taking the union of the
men and women and extending the preference list where the people in the other instance are disliked.
The only stable pairings pair people in the original instances, and the pessimal pairing in one instance
and the optimal pairing in the other is stable, since there will be no rogue couple consisting of people
from different instances. This pairing is optimal for half the men, and pessimal for the other half.

6. Any graph with no triangles is two colorable.
Answer: False. Consider a single cycle of length 5.

7. There is a graph with average degree 2 that does not have a cycle.
Answer: False. Consider the connected components. At least one has average degree greater than 1,
which suggests that the number of edges is at least n, which says it is connected and not a tree and
therefore must have a cycle.

CS 70, Spring 2019, Midterm 2 Solutions 1



SID:

8. The length of any Eulerian tour of a graph is even.
Answer: False. Consider a triangle.

9. There is a program that takes a program P and input x and number of steps, s and returns YES if and
only if P run on x halts in s steps.
Answer: True. One can just simulate the program P run on x for s steps.

10. If one can write a program that solves a problem P using the halting problem as a subroutine then the
problem P is undecidable.
Answer: False. This is the wrong way. It could be easy to solve. To show the problem P is undecidable
one would show how to solve the halting problem given a program to solve the problem P.

11. There is a bijection between the powerset of rational numbers and the real numbers. (The powerset of
set S is the set of all subsets of S.)
Answer: True. There is a bijection from the rationals to the integers and the power set of the integers
has a bijection with the real numbers.

12. If Pr[A∪B] = Pr[A]+Pr[B] then A and B are independent.
Answer: False. If A and B have non-zero probability, this implies that Pr[A∩B] = 0, which is clearly
not Pr[A]×Pr[B] which means they are not indpendent.

13. Given n balls being thrown into n bins, the event “the first bin is empty” and the event “the second bin
is empty” are independent.
Answer: False. If the first bin is empty, the second is less likely to be empty.

2. Quick proof. 7 points.

Prove that
n

∑
i=1

1
i(i+1)

=
n

n+1
.

Answer: Solution 1 (Induction): We perform induction on n.

Base Case: For n = 1, we have 1
1·2 = 1

1+1 which is a true statement.

Inductive Hypothesis: Suppose for some k, we have ∑
k
i=1

1
i(i+1) =

k
k+1 .

Inductive Step: We see that

k+1

∑
i=1

1
i(i+1)

=
1

(k+1)(k+2)
+

k

∑
i=1

1
i(i+1)

=
1

(k+1)(k+2)
+

k
k+1

(Inductive Hypothesis)

=
1+ k(k+2)
(k+1)(k+2)

=
(k+1)����(k+1)
����(k+1)(k+2)

=
k+1
k+2

which concludes our induction.

Solution 2: Note that 1
i(i+1) =

1
i −

1
i+1 . Therefore,

1
1 ·2

+
1

2 ·3
+ · · ·+ 1

n(n+1)
=

1
1
− 1

2
+

1
2
− 1

3
+ · · ·+ 1

n−1
− 1

n
.

The terms in the middle all cancel and we are left with 1− 1
n = n

n+1 .
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3. Short Answer: Discrete Math. 3 points each part, 48 points total.

1. What is the number of faces in a planar drawing of a planar graph with n vertices where every vertex
has degree 3?
Answer: n/2+ 2. e is the sum of degrees divided by 2 or 3n/2 and Euler says v+ f = e+ 2 so
f = e−n+2 = n/2+2.

2. Given a graph G = (V,E) with k connected components, what is the minimum number of edges one
needs to add to ensure that the resulting graph is connected?
Answer: k− 1. One can repeatedly add an edge between two components, reducing the number of
components to 1 after k−1 edges.

3. The hypercube graph for dimension d has an Eulerian tour when d = (mod 2).
Answer: 0. Degree is d, which should be even.

4. For a dimension d hypercube with a Eulerian tour of length L and a Hamiltonian cycle of length `,
what is L/`?
Answer: d/2. The Eulerian path uses every edge of which there are 2d · d/2, and the Hamiltonion
path is of length 2d , since there are 2d vertices.

5. What is the minimum number of odd degree vertices in a connected acyclic graph?
Answer: 2. There is at least one degree 1 vertex, and the number of odd degree vertices in any graph
is even. Moreover, a path has two degree 1 vertices.

6. What is 210 (mod 11)?
Answer: 1. One can use Fermat’s Theorem.

7. For distinct primes p,q,r and N = pqr, how many elements of {0,1, . . . ,N−1} are relatively prime to
N?
Answer: (p− 1)(q− 1)(r− 1). We can use inclusion/exclusion: Start with pqr then subtract pr for
the multiples of p, and qr for the multiples of p, and pq for the multiples of r, and add back p for
multiples of qr, q for multiples of pr, and r for multiples of pq and subtract 1 for multiple pqr.
This turns out to be pqr− pr−qp−qr+ p+q+ r−1 = (p−1)(q−1)(r−1).
Alternatively, there are p−1 choices for what x (mod p) is, q−1 choices for what x (mod q) is, and
r− 1 choices for what x (mod r) is. By CRT, any choice of what x is modulo p,q,r yields a unique
value of x (mod pqr), so the final answer is (p−1)(q−1)(r−1).

8. Consider N and the set S = {x ∈ {0, . . .N−1} : gcd(x,N) = 1} where k = |S|.
For a ∈ S, we define T = {ax (mod N) : x ∈ S}. What is |T |? Answer may include N and k.
Answer: k. The function f (x) = ax (mod N) is a bijection since a is relatively prime to N. It is
injective because

f (x) = f (y)⇒ ax = ay (mod N)⇒ a−1ax = a−1ay (mod N)⇒ x = y (mod N).

This function is surjective because for each y ∈ S, we know f (a−1y) = y and a−1y ∈ S.

9. For a prime p, what is a positive integer x that guarantees ax = 1 (mod p2) for all a relatively prime
to p? Answer may include p.
Answer: p(p−1). Let S be the set of integers between 0 and p2−1 inclusive that are relatively prime
to p. Then, |S|= p2− p and f : S→ S where f (x) = ax (mod p2) is a bijection. Therefore,

∏
i∈S

i = ∏
i∈S

ai (mod p2)⇒ a|S| = 1 (mod p2).
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|S|= p(p−1) yields the desired conclusion.
Note: any positive multiple of p(p−1) was given credit, since our proof also proves that akp(p−1) = 1
(mod p2) for any positive integer k.
It also turns out that p(p−1) is the best that we can do. The proof of this is beyond the scope of this
class.

10. For distinct primes p,q,r, what is a(p−1)(q−1)(r−1) (mod pqr), where a is relatively prime to pqr.
Answer may include p,q,r.
Answer: 1 (mod pqr). By FLT, we see a(p−1)(q−1)(r−1) ≡ 1 (mod p), a(p−1)(q−1)(r−1) ≡ 1 (mod q),
and a(p−1)(q−1)(r−1) ≡ 1 (mod r), so by CRT, we must have a(p−1)(q−1)(r−1) = 1 (mod pqr).

11. Jonathan wants to tell Emaan how many chicken nuggets he ate today, which we will call c. He doesn’t
want the world to know, so he encrypts it with Emaan’s public key (N,e), which yields the ciphertext
x. Jerry intercepts the message, and wants to make it look like Jonathan actually ate 5 times as many
chicken nuggets. What message should she send to Emaan? Answer may include x, N, and e. You
may not include c.
Answer: 5e · x (mod N). This works because x = ce (mod N), so 5ex = (5c)e (mod N).
For the following parts consider two non-zero polynomials P(x) and Q(x) of degree d over GF(p)
(modulo p), with rp roots and rq roots respectively.

12. What is the maximum number of roots for the polynomial P(x)Q(x)? Answer may include d, rp, and
rq. (Your answer should be achievable for any valid d, rp and rq.)
Answer: min(p,rp + rq). One can only have roots at a root of P(x) or Q(x) which yields rp + rq as
an upper bound. However, since we are working in GF(p), any polynomial can only have at most p
roots.

13. What is the minimum number of roots for the polynomial P(x)Q(x)? Answer may include d, rp, and
rq.
Answer: max(rp,rq). The roots could completely overlap.

14. Let S = {(x1,y1), . . . ,(xn+2k,yn+2k)} be a set of n+2k points where the xi are distinct. If P(x) and Q(x)
are polynomials where P(xi) = yi for at least n+k points in S and Q(x j) = y j for at least n+k points in
S, what is the minimum number of points that P(x) and Q(x) must agree on in S? Answer may include
n and k.
Answer: n. There are 2n+ 2k points contained in both polynomials and only n+ k points, so they
must both contain at least 2n+2k− (n+2k) = n points. This is from error correction.

15. Working over GF(5), describe a degree exactly 2 polynomial where P(1) = 1 and P(2) = 2.
Answer: All answers of the form c(x− 1)(x− 2) + x are accepted, for c ∈ {1,2,3,4}. Note that
P(x)− x has roots at 1 and 2, so therefore P(x)− x = c(x−1)(x−2).

16. Let P(x) be a degree d = n−1 polynomial over GF(p) (p is prime) that contains all but `≤ k of n+2k
points which are given. In this situation, recall that the Berlekamp-Welsh procedure can reconstruct
P(x) by assuming the existence of an error polynomial E(x) of degree exactly k and leading coefficient
of 1, and a polynomial Q(x) = P(x)E(x). How many possible pairs of Q(x) and E(x) are consistent
with the Berlekamp-Welsh procedure? Answer may include `,k,d,n, and p.
Answer: pk−`. We know that E(x) is divisible by (x− e1)(x− e2) · · ·(x− e`), so E(x) = (x− e1)(x−
e2) · · ·(x− e`)R(x) for some polynomial R(x), where the degree of R(x) is k− ` and its leading coeffi-
cient is 1. There are pk−` such R(x).

4. Short Answer: Counting. 3 points each. 12 points total.
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1. What is the number of ways to place n distinguishable balls into k distinguishable bins?
Answer: kn. Each of n balls has k possibilities.

2. What is the number of ways to place n distinguishable balls into k distinguishable bins where no two
balls are placed in the same bin? You may assume that n≤ k.
Answer: k!

(k−n)! . k ways to choose the first one, k−1 ways to choose the second and so on.

3. What is the number of ways to divide d dollar bills among p people? Assume dollar bills are indistin-
guishable and people are distinguishable.
Answer:

(d+p−1
p−1

)
. This is stars and bars where the dollars correspond to d stars and the people

correspond to p−1 stars.

4. How many (x1, ...,xk,y1,y2, ...,yk) are there such that all xi, yi are non-negative integers,
k

∑
i=1

xi = n, and

yi ≤ xi for 1≤ i≤ k? Answer may not include any summations.
Answer:

(n+2k−1
2k−1

)
. Define zi = xi− yi for each i. Then, we see that zi ≥ 0 and

k

∑
i=1

zi +
k

∑
i=1

yi = n

From stars and bars, there are
(n+2k−1

2k−1

)
ways to pick the yi and the zi. xi can be uniquely constructed

from yi and zi, so this is our final answer.

5. Short Answer: Probability. 3 points each part, 18 points total.

1. Given two tosses of a fair coin, what is Pr[heads on the second coin|at least one heads in the two tosses].
Answer: 2/3. Each of the four possibilities HH,T H,HT,T T are equally likely. And out of the three
with a heads have heads for the second coin.

2. Consider two events, A and B with Pr[A∪B] = 3
4 , and Pr[A] = 1

2 , and Pr[B] = 4
5 , what is Pr[A∩B]?

Answer: 11
20 . Inclusion/Exclusion. 1

2 +
4
5 −

3
4 = 11

20 .

3. Alice and Bob both try to a climb a rope. Alice and Bob will get to the top of the rope with probability
1/3 and 1/4 respectively. Given that exactly one person got to the top, what is the probability that the
person is Alice?
Answer: 3

5 . The probability that exactly one person makes it to the top is 1
3 ·

3
4 +

2
3 ·

1
4 = 5

12 . Then, the
probability that it was actually Alice and not Bob is 1

3 ·
3
4 = 1

4 . Dividing 1/4 by 5/12 yields 3/5.

4. Given X ∼ Geom(p), what is Pr[X = i|X > j]? Assume i > j.
Answer: p(1− p)(i− j−1). One needs a success and (i− j−1) failures to get from j to i.

5. Given independent X ,Y ∼ Bin(n, p), what is Pr[X +Y = i]?
Answer:

(2n
i

)
pi(1− p)2n−i. X +Y ∼ Bin(2n, p)

6. Consider a random variable X where E[X4] = 5, give as good upper bound on Pr[X ≥ 5] as you can.
Answer: 1

125 .

Pr[X ≥ 5] = Pr[X4 ≥ 54]≤ E[X4]
54 = 1

53 .

The random variable X = 5 with probability 1
125 and 0 demonstrates that this is the best possible bound.

6. Concepts through balls in bins. 3 points each part, 18 points total.

Consider throwing n balls into n bins uniformly at random. Let X be the number of balls in the first bin.
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1. What is the expected value of X?
Answer: 1. One can use linearity of expectation: X1 + · · ·Xn, where X1 indicates that ball i falls into
bin 1 and E[X1] = 1/n.

2. Use Markov’s inequality to give an upper bound on Pr[X ≥ k].

Answer: 1/k. Markov says Pr[X ≥ k]≤ E[X ]
k .

3. What is the variance of X?
Answer: 1− 1

n .
Take X = X1 + . . .+Xn where Xi is an indicator random variable for choosing ball i choosing bin 1.
From the fact that each Xi has variance 1

n(1−
1
n) and the fact that Xis are independent from each other,

we get n
(1

n

(
1− 1

n

))
= (1−1/n).

4. Use Chebyshev’s inequality to give an upper bound on Pr[X ≥ k].

Answer: 1− 1
n

(k−1)2 . From Chebyshev’s, we know that

Pr[|X−1| ≥ k−1]≤ 1−1/n
(k−1)2

Furthermore, we know Pr[|X−1| ≥ k−1] = Pr[X ≥ k∪X ≤ 2− k]≥ Pr[X ≥ k].

5. Now let Y be the number of balls in the second bin. What the joint distribution of X ,Y , i.e., what is
Pr[X = i,Y = j]?

Answer:
(n

i

)(n−i
j

)(1
n

)i+ j (1− 2
n

)n−i− j. There are
(n

i

)
ways to choose which balls will go into the first

bin, and
(n−i

j

)
ways to pick which balls go into the second bin. After picking, the probability that the i

balls actually end up in the first bin is 1
ni , the probability that the j balls end up in the second bin is 1

n j ,

and the probability that the other n− i− j balls end up in not the first and second bins is
(
1− 2

n

)n−i− j.

6. What is Pr[X = i|Y = j]?

Answer:
(n− j

i

)( 1
n−1

)i (n−2
n−1

)n−i− j. We can pretend the second bin doesn’t exist, since it will have j
balls already. Then, there are n− j balls left, thrown into n−1 bins.

7. Lots of chicken nuggets. 5 points each part, 15 points total.

We will model the number of customers going into Emaan’s and Jonathan’s favorite McDonalds within an
hour as a random Poisson variable, i.e., X ∼ Poisson(λ ).

1. Given that λ = 5, what is the probability that 5 people come in during the hour that Emaan and Jonathan
are eating chicken nuggets?

Answer: e−5 55

5! .

2. If λ is unknown but is definitely at most 10, how many hours do Emaan and Jonathan need to be at
McDonalds to be able to construct a 95% confidence interval for λ that is of width 2. (You should use
Chebyshev’s inequality here. Recall for X ∼ Poisson(λ ) that Var(X) = λ )
Answer: 200 hours. For the X ∼ Poisson(λ ), the variance is λ . If we observe n samples X1,X2, . . . ,Xn,
we can estimate λ as Y := X1+X2+···+Xn

n . Then we have E[Y ] = λ and Var(Y ) = λ

n .

Chebyshev says Pr[|Y − µ| ≥ t] ≤ Var(Y )
t . We wish this probability to be less than 1

20 , and we have
t = 1. Plugging in, we get 10

n ≤
1

20 . Or n = 200.
That’s a lot of time to eat chicken nuggets.
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3. Solve the previous problem but now assume you can use the Central Limit Theorem. (Hint: You may
want to use the table in the back of the exam).
Answer: 40 hours. Or more precisely d10 · 1.962e = 39 hours. We assume now that Y−λ√

λ/n
follows a

normal 0,1 distribution. From the table in the back of the exam, we see that

Pr

[
−1.96≤ Y −λ√

λ/n
≤ 1.96

]
≈ 0.95

Therefore, the width of the confidence interval is 2 ·1.96 ·
√

λ/n. Setting this equal to 2 and using the
fact that λ ≤ 10 yields 10 ·1.962.

8. Not so dense density functions. 5 points each (sub)part, 15 points total.

1. Consider a continuous random variable whose probability density function is cx−3 for x ≥ 1, and 0
outside this range. What is c?
Answer: 2. 1 =

∫
∞

1 cx−3 =− cx−2

2 |
∞
1 = c

2 , which implies c = 2.
2. Consider random variables X ,Y with joint density function f (x,y) = cxy for x,y ∈ [0,1], and 0 outside

that range.
(a) What is c?

Answer: 4.
∫ 1

0
∫ 1

0 cxydxdy = c
4 = 1, so c = 4.

(b) What is Pr[ |X−Y | ≤ 1/2 ]?
Answer: 41

48 . The density function is symmetric around the line y = x, so we will only consider
the part above y = x. Moreover, the integration is a bit easier if one considers the complement or
when |X −Y | ≥ 1/2. This corresponds the 2

∫ 1
1/2
∫ 1/2−y

0 4xydxdy, where the factor of 2 is where
we use the symmetry. Integrating gives 7

48 . Taking the complement yields 41
48 .

9. This is Absolutely Not Normal! 6 points each part, 12 points total.
Consider a standard Gaussian random variable Z whose PDF is

∀z ∈ R, fZ(z) =
1√
2π

e−z2/2.

Define another random variable X such that X = |Z|.

(a) Determine a reasonably simple expression for fX(x), the PDF of X . It may be helpful to draw a plot.
Place your final expression in the box below.
Answer: We’ll solve this part in two ways.
Method I For x < 0, the CDF of X is

FX(x) = Pr [X ≤ x] = 0.

For x≥ 0 the CDF is given by

FX(x) = Pr(−x≤ Z ≤ x)

= Φ(x)−Φ(−x)

= Φ(x)− [1−Φ(x)]︸ ︷︷ ︸
Φ(−x)

= 2Φ(x)−1,

7



SID:

where Φ(x) =
∫ x

−∞

fZ(z)dz denotes the CDF of the standard Gaussian random variable.

Method II This method is longer for the problem at hand, but it uses mixture probabilities and the
Law of Total Probability, so it’s worth describing. In particular, we recognize that

X =

{
Z if Z ≥ 0
−Z if Z < 0.

Using the Law of Total Probability, we can write the PDF for X as a mixture PDF—namely,

fX(x) = fX |Z≥0(x)Pr(Z ≥ 0)+ fX |Z<0(x)Pr(Z < 0).

We note that Pr(Z ≥ 0) = Pr(Z < 0) = 1/2. We also recognize that for x < 0, it must be the case
that fX(x) = 0. However, for x≥ 0, we have:

fX(x) = fX |Z≥0(x) =
fX ,Z≥0(x)

Pr(Z ≥ 0)

=
fZ(x)

Pr(Z ≥ 0)

=

√
2
π

e−x2/2.

Therefore,

fX(x) =


0 if x < 0√

2
π

e−x2/2 if x≥ 0

(b) Determine a reasonably simple expression for E(X), the mean of X . Place your final answer in the box
below.
Answer: The mean of X is given by

E(X) =
∫

∞

0
x fX(x)dx

=

√
2
π

∫
∞

0
xe−x2/2 dx.

Let s = x2/2, so that ds = xdx. We then have

E(X) =

√
2
π

∫
∞

0
e−s ds,

which leads to

E(X) =

√
2
π
.
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10. Joint Distributions with Kyle and Lara. 6 points each part, 18 points total.

Kyle and Lara arrive in Saint Petersburg randomly and independently, on any one of the first five (5) days
of May 2019. Let K be the day that Kyle arrives, and let L be the day that Lara arrives. (Note that K and L
will both be in {1,2,3,4,5}).
Whoever arrives first must wait for the other to arrive before going on any kind of excursion in the city.

(a) Determine E[|K−L|], the expected wait time in days.

Answer: If K and L arrive in Saint Petersburg randomly then their PMFs are uniform over the set
{1,2,3,4,5}. Since K and L are independent, the joint PMF will be the uniform PMF over the range
k ∈ {1,2,3,4,5} and ` ∈ {1,2,3,4,5}:

pK(k) =


1
5

if k ∈ {1,2,3,4,5}

0 otherwise,

and pL(`) =


1
5

if ` ∈ {1,2,3,4,5}

0 otherwise.

pK,L(k, `) =


1
25

if k, ` ∈ {1,2,3,4,5}

0 otherwise.

We determine the mean wait time E[|K−L|] in two different ways:

Method I

E[|K−L|] =
5

∑
k=1

5

∑
`=1

(
1
25

)
|k− `|

= 0
(

5
25

)
+1
(

8
25

)
+2
(

6
25

)
+3
(

4
25

)
+4
(

2
25

)
=

8
5

Method II Let’s define three mutually exclusive, collectively exhaustive events

K > L, K < L, and K = L,

which are depicted in the figure below:

9
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1 k42 3 5

l

1

4

2

3

5

K>L

K<L K=L

It’s clear from the sample space that

P(K > L) = P(K < L) = 10/25 = 2/5 and P(K = L) = 5/25 = 1/5.

We can then compute the expected value of the wait time by invoking the Law of Total Expectation
as follows:

E[|K−L|] = E
[
|K−L|

∣∣∣A]P(A)+E
[
|K−L|

∣∣∣B]P(B)+E
[
|K−L|

∣∣∣C]P(C).

When Event C occurs, K = L, so |K−L|= 0. Furthermore, by symmetry it must be true that

E
[
|K−L|

∣∣∣A]P(A) = E
[
|K−L|

∣∣∣B]P(B).

So, E[|K − L|] = 2E
[
|K−L|

∣∣∣A]P(A). If event A occurs, K > L, we can simply remove the
absolute value:

E[|K−L|] = 2E
[
K−L

∣∣∣A]P(A)

= 2
[

1 ·
(

4
10

)
+2 ·

(
3
10

)
+3 ·

(
2
10

)
+4 ·

(
1
10

)](
2
5

)
=

8
5
.

(b) Given that Kyle arrives at least a day later than Lara:

(i) Determine the conditional probability mass function for Kyle’s arrival day, p
K
∣∣(K>L)

(k)

(ii) Provide a well-labeled plot of p
K
∣∣(K>L)

(k).

Answer: Conditioning the sample space on the Event K > L we obtain the following conditional joint
PMF of K and L:

10
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1 k42 3 5

l

1

4

2

3

5

K>L

The marginal conditional PMF of K is now obtained by summing the joint conditional PMF values
along each column—i.e., along the ` direction. In particular,

p
K
∣∣(K>L)

(k) = ∑
`

p
K,L
∣∣(K>L)

(k, `).

1 k42 3 5 6

11. Markov Chains 3 points for each part, 18 points total.

Consider the two Markov Chains represented by the following state transition diagrams.

11
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Markov Chain I

0

12

p
1− p

p
1− p

p

1− p

Markov Chain II

0

1

2

3

p
1− p

1− p

p

p

1− p
1− p

p

(a) For Markov Chain I:

(i) Do the n-step transition probabilities—defined by ri j(n) = Pr
(
Xn = j

∣∣X0 = i
)

—converge as n→
∞?
Answer: Converges. the chain is aperiodic since the random walker can come back to its original
state in either 2 or 3 steps. Thus ri j(n) converges as n→ ∞.

(ii) If so, determine the corresponding limit to which each transition probability converges, and ex-
plain whether and why the limit depends on the initial state (i.e., the state at which the walker was
stationed initially). If you assert that the transitional probabilities do not converge, explain why
no limit exists.
Answer: By structural symmetry, the limiting values are 1

3 for all i, j. The limit does NOT depend
on the initial state. This is because the chain consists of only a single recurrent class.

Markov Chain I

0

12

p
1− p

p
1− p

p

1− p

Markov Chain II

0

1

2

3

p
1− p

1− p

p

p

1− p
1− p

p

(b) For Markov Chain II:

(i) Do the n-step transition probabilities—defined by ri j(n) = Pr
(
Xn = j

∣∣X0 = i
)

—converge as n→
∞?
Answer: Does not converge

(ii) If so, determine the corresponding limit to which each transition probability converges, and ex-
plain whether and why the limit depends on the initial state (i.e., the state at which the walker was
stationed initially). If you assert that the transitional probabilities do not converge, explain why
no limit exists.
Answer: For the case m= 4, the n-step probabilities do not converge since the Markov chain is pe-
riodic. To see this, note that the walker can come back to its origin only in an even number of steps.

12
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Alternatively, you can look at the sequence rii(n), say for i = 0: 0,r00(2),0,r00(4),0,r00(6), . . . .
This sequence converges if, and only if, r00(2k) goes to 0 as k→∞, which is impossible, since the
walk cannot oscillate forever between nodes 1, 2, and 3. Thus the n-step transition probabilities do
not converge in this case. Yet another way to see the periodicity of the four-node chain is to note
that we can group the nodes 0 and 2 into one subgraph, and group the nodes 1 and 3 into another
subgraph. Clearly, the graph is bipartite, with each transition occurring across the subgraphs so
defined.

(c) ( Points) Consider Markov Chain I above. Determine t∗0 , the mean recurrence time for State 0.
The mean recurrence time for a state s is the expected number of steps up to the first return to state s,
starting from state s. In other words,

t∗s = E
[

min(n≥ 1 such that Xn = s) | X0 = s
]
.

In particular,
t∗s = 1+∑

i
psi ti,

where ti, which denotes the mean first passage time from State i to State s, is given by

ti = E
[

min(n≥ 0 such that Xn = s) | X0 = i
]
.

(i) Write the system of equations that you would solve in the box below. Use t∗0 , t1, t2, and p.
(ii) Set p to 1/2 and write your final answer for the value of t∗0 in the box below.

Answer: For t∗0 , t1 and t2, we have the following equations

t∗0 =1+ pt1 +(1− p)t2
t1 =1+ pt2
t2 =1+(1− p)t1.

Setting p = 1
2 yields t∗0 = 3.

12. Derive Magic from a Uniform PDF. 5 points per part. 15 points.

A random-number generator produces sample values of a continuous random variable U that is uniformly
distributed between 0 and 1.

In this problem you’ll explore a method that uses the generated values of U to produce another random
variable X that follows a desired probability law distinct from the uniform.

(a) Let g : R→ [0,1] be a function that satisfies all the properties of a CDF. Furthermore, assume that g is
invertible, i.e. for every y ∈ (0,1) there exists a unique x ∈ R such that g(x) = y.
Let random variable X be given by X = g−1(U), where g−1 denotes the inverse of g. Prove that the
CDF of X is FX(x) = g(x).
Answer: The CDF of X is

FX(x) = Pr(X ≤ x) = Pr
[
g−1(U)≤ x

]
.

Since g is strictly increasing, we know that g−1(U)≤ x if, and only if,

g
[
g−1(U)

]
=U ≤ g(x).

13
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Therefore,

FX(x) = Pr [U ≤ g(x)] = FU [g(x)] = g(x).

If g is differentiable, we can obtain the PDF of X as well:

fX(x) =
dFX(x)

dx
=

dg(x)
dx

.

Upshot: If we want to simulate a random variable X that obeys a desired CDF FX(x), which is in-
vertible over a range S= {x |0 < g(x)< 1} of interest, we can generate random variable U uniformly
distributed in [0,1), and let X = F−1

X (U).

(b) A random variable X follows a double-exponential PDF given by

∀x ∈ R, fX(x) =
λ

2
e−λ |x|,

where λ > 0 is a fixed parameter.
Using the random-number generator described above (which samples U), we want to generate sample
values of X . Derive the explicit function that expresses X in terms of U . In other words, determine the
expression on the right-hand side of

X = g−1(U).

To do this, you must first determine the function g. From part (a) you know that g(x) = FX(x), so you
must first determine FX(x). It might help you to sketch the PDF of X first. Place your expression for
g−1 in the box below.
Answer: For x < 0,

FX(x) =
∫ x

−∞

fX(t)dt =
λ

2

∫ x

−∞

eλ t dt =
1
2

eλ x.

For x≥ 0,

FX(x) = FX(0)+
∫ x

0
fX(t)dt =

1
2
+

λ

2

∫ x

0
e−λ t dt =

1
2
+

1
2

[
1− e−λ x

]
= 1− 1

2
e−λ x.

That is,

g(x) = FX(x) =


1
2

eλ x if x < 0

1− 1
2

e−λ x if x≥ 0.

To determine X = g−1(U), we consider two ranges of U separately: 0 ≤U < 1/2 and 1/2 ≤U < 1.
We do this because for each of these two ranges the CDF FX(x) takes on distinct functional forms.
If 0≤U < 1/2, we let FX(X) = 1

2 eλ X =U . Solving for X , we obtain

X =
1
λ

ln(2U).

If 1/2≤U < 1, we let FX(X) = 1− 1
2 e−λ X =U . Solving for X , we obtain

X =− 1
λ

ln [2(1−U)] .

14



SID:

Accordingly, we generate sample values of X as follows:

X =


1
λ

ln(2U) if 0≤U < 1/2

− 1
λ

ln [2(1−U)] if 1/2≤U < 1.
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